Progress in Numerical Simulation of Long-Term Impact of Thermokarst Lakes on Permafrost Thermal Regime

  • Feng Ling ,
  • Tingjun Zhang
Expand
  • 1.School of Mathematics and Statistics, Zhaoqing University, Zhaoqing Guangdong 526061, China
    2.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

First author:Ling Feng(1963- ),male, Qishan County, Shaanxi Province, Professor. Research areas include scientific computation with application in the land-atmosphere interaction in cold regions.E-mail:lingf@zqu.edu.cn

Received date: 2017-08-18

  Revised date: 2018-01-08

  Online published: 2018-04-02

Supported by

Project supported by the National Natural Science Foundation of China “Numerical simulation of the long-term impact of thermokarst lakes on permafrost thermal regime under the lake” No.41271076);The Guangdong Natural Science Foundation “Heat Balance Integral (HBI) method and its applications in geoscience” No.2015A030313704)

Copyright

地球科学进展 编辑部, 2018,

Abstract

Thermokarst lakes are a major heat source for the adjacent permafrost and a significant source of atmospheric methane. These lakes have important impacts on the physical, chemical, biological, geomorphological and hydrological processes occurring in the ground under and around thermokarst lakes, and seriously affect the local environment and the stability of the structures constructed in permafrost regions. Numerical simulation methods provide an effective method for quantitative analysis of the long-term impact of thermokarst lakes and their evolution on permafrost surrounding the lakes, and have deepened our knowledge about the impact of thermokarst lakes immensely. Summarizing the research progresses in numerical simulation of long-term impact of thermokarst lakes on thermal regime of surrounding permafrost has an important guiding function to improve mathematical models and develop more effective models. In this study, the components, functions, advantages and defects of several typical mathematical models having developed over the past ten years or so were reviewed, such as the heat conduction model with phase change, thaw slumping model, the coupled lake-permafrost model, thaw lake expansion model combining thermal processes with mass wasting and thaw-driven subsidence, the coupled heat conduction and moisture migration model, and the moving mesh method based thermokarst lake dynamic evolution model. Several issues deserving to be paid further attention in the future researches were proposed, including creating more effective models, determining the more realistic initial condition, lucubrating thermal and physical parameters of the typical soils, consider the impact of lake water replenishment, quantitative analysis of the thermal effect of supra-permafrost water flow around the thermokarst lakes, creating the coupled governing equation of heat conduction with phase change and convective heat transfer, embed ding the effect of climate warming in the model, numerical investigation of the long-term influence of thermokarst lake drainage on the environment change in permafrost regions, analyzing the long-term joint impact of multiple lakes on adjacent permafrost, simulating the near-shore talik development process and feature beneath shallow water in expanding thermokarst lakes, and continuing to do the systemic and comprehensive field measurements.

Cite this article

Feng Ling , Tingjun Zhang . Progress in Numerical Simulation of Long-Term Impact of Thermokarst Lakes on Permafrost Thermal Regime[J]. Advances in Earth Science, 2018 , 33(2) : 115 -130 . DOI: 10.11867/j.issn.1001-8166.2018.02.0115

References

[1] Washburn A L.Geocryology: A Survey of Periglacial Processes and Environments[M]. New York: Halsted Press, 1980: 406.
[2] Qiu Guoqing, Liu Jingren, Liu Hongxu, et al.Dictionary of Permafrost[M]. Lanzhou: Gansu Science and Technology Press, 1994:275.
[2] [邱国庆, 刘经仁,刘洪绪,等.冻土学词典[M].兰州:甘肃科学技术出版社,1994: 275.]
[3] Black R F, Barksdale W L.Oriented lakes of northern Alaska[J]. The Journal of Geology,1949, 57:105-118.
[4] Sellmann P V, Brown J, Lewellen R L,et al.The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska[R].CRREL Research Report 344,1975:36.
[5] Ling Feng, Zhang Tingjun.Numerical simulation of permafrost thermal regime and talik development under shallow thermokarst lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research,2003, 108(D16).DOI:10.1029/2002JD003014.
[6] Hinkel K M, Frohn R, Nelson F E, et al.Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska[J]. Permafrost Periglacial Processes,2005, 16: 327-341.
[7] Mackay J R.A full-scale field experiment (1978-1995) on the growth of permafrost by means of lake drainage, Western Arctic Coast: A discussion of the method and some results[J]. Canadian Journal of Earth Sciences,1997, 34: 17-33.
[8] Burn C R.Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada[J]. Canadian Journal of Earth Sciences,2002, 39(6): 1 281-1 298.
[9] Ling Feng, Zhang Tingjun.Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research,2004, 109(D1).DOI:10.1029/2003JD003886.
[10] Zimov S A, Voropaev Y V, Semiletov I P, et al.North Siberian lake: A methane source fueled by Pleistocene carbon[J]. Science, 1997, 277: 800-802.
[11] Brouchkov A, Fukuda M, Fedorov A, et al.Thermokarst as a short-term permafrost disturbance, Central Yakutia[J]. Permafrost Periglacial Processes, 2004, 15(1): 81-87.
[12] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Science Press, 2000: 398.
[12] [周幼吾, 郭东信,邱国庆,等. 中国冻土[M].北京: 科学出版社,2000: 398.]
[13] Bian D, Yang Z, Li D, et al.The response of lake area change to climate variations in North Tibetan Plateau during last 30 years[J]. Journal of Geographical Science, 2006, 61(5): 510-519.
[14] Liu J, Wang S, Yu S, et al.Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau[J]. Global and Planetary Change, 2009, 67: 209-217.
[15] Cheng G D, Wu T. Responses of permafrost to climate change and their environmental significant, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112: F02S03.DOI:10.1029/2006JF000631.
[16] Lin Zhanju, Niu Fujun, Xu Zhiying, et al.Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(3):315-324.
[17] Lin Zhanju, Niu Fujun, Liu Hong, et al.Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2011, 65(3): 446-455.
[18] Niu F J, Lin Z J, Liu H, et al.Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3): 222-233.
[19] Nelson F E, Anisimov O A, Shiklomanov N L.Subsidence risk from thawing permafrost[J]. Nature, 2001, 410: 889-890.
[20] Niu Fujun, Dong Cheng, Lin Zhanju, et al.Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet Highway[J]. Advances in Earth Science, 2013, 28(6): 335-342.
[20] [牛富俊,董晟,林战举, 等. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6):335-342.]
[21] Jorgenson M T, Shur Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle[J]. Journal of Geophysical Research,2007, 112: F02S17. DOI:10.1029/2006JF000531.
[22] Kokelj S V, Lantz T C, Kanigan E, et al.Origin and polycyclic behavior of Tundra Thaw Slumps, Mackenzie Delta Region, Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2009, 20: 173-184.
[23] Phelps A R, Peterson K, Jeffries M O.Methane efflux from high-latitude lakes during spring ice melt[J]. Journal of Geophysical Research, 1998, 103(D22): 29 029-29 036.
[24] Jeffries M O, Zhang T, Frey K, et al.Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope[J]. Journal of Glaciology,1999, 45(3): 315-324.
[25] Brouchkov A, Fukuda M.Preliminary measurements on methane content in permafrost, Central Yakutia, and some experimental Data[J]. Permafrost and Periglacial Processes,2002, 13(3): 187-197.
[26] Roy-Leveillee P, Burn C R.Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon[J]. Journal of Geophysical Research,2017, 122: 1 070-1 089.
[27] Walter K M, Zimov S A, Chanton J P, et al.Methane bubbling from Siberian thaw lakes as positive feedback to climate warming[J]. Nature,2006, 443(7): 71-75.
[28] Walter K M, Edwards M E, Grosse G, et al.Thermokarst lakes as a source of atmospheric CH4 during the Last deglaciation[J]. Science,2007, 318: 633-636.
[29] Van Huissteden J, Berrittella C, Parmentier F W.Methane emissions from permafrost thaw lakes limited by lake drainage[J]. Nature Climate Change,2011,(1):119-123.DOI: 10.1038/NCLIMATE1101.
[30] Lu Yi, Zhang Wen, Li Tingting, et al.Progress in the simulation of the impacts of sources and sinks on the tempo-spatial variations of the atmospheric[J]. Advances in Earth Science,2015, 30(7): 763-772.
[30] [鲁易,张稳, 李婷婷, 等. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展,2015,30(7): 763-772.]
[31] Marsh P, Neumann N.Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada[J]. Hydrological Processes,2001, 15: 3 433-3 446.
[32] Hinkel K M, Eisner W R, Bockheim J G, et al.Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska[J]. Arctic, Antarctic, and Alpine Research, 2003, 35(3): 291-300.
[33] Smith L C, Sheng Y, MacDonald G M,et al. Disappearing Arctic lakes[J]. Science,2005, 308(5 727): 1 429.
[34] Kokelj S V, Jorgenson M T.Advances in thermokarst research[J]. Permafrost and Periglacial Processes,2013, 24: 108-119.
[35] Ling Feng, Wu Qingbai, Zhang Tingjun, et al.Modeling talik development and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes,2012, 23(4): 321-312.
[36] Ling Feng, Fu Shouzhong, Chen Shumin, et al.Numerical Computation Methods (Second Edition)[M]. Beijing: National Defence Industry Press, 2015: 158.
[36] [令锋,傅守忠,陈树敏,等. 数值计算方法(第2版)[M]. 北京:国防工业出版社, 2015: 158.]
[37] Lunardini V J.Heat Transfer in Cold Climates[M]. New York: Van Nostrand Reinhold, 1981: 731.
[38] Lachenbruch A H, Marshall B V.Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic[J]. Science, 1986, 234: 689-696.
[39] Li S X, Cheng G D, Guo D X.The future thermal regime of numerical simulating permafrost on Qinghai-Xizang (Tibet) Plateau, China, under climate warming[J]. Science in China (Series D),1996, 39(4): 434-441.
[40] Ling Feng, Zhang Tingjun.A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology,2004, 38(1): 1-15.
[41] Taylor G S, Luthin J N.A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal,1978, 15(5): 548-555.
[42] Comini G, Guidice S D, Lewis R W, et al.Finite element solution of non-linear heat conduction problem with special reference to phase change[J]. International Journal for Numerical Methods in Engineering,1973, 8(6): 613-624.
[43] Kong Xiangqian.Applications of Finite Element Method in Heat Transfer[M].Beijing: Science Press,1998:372.
[43] [孔祥谦. 有限单元法在传热学中的应用[M].北京:科学出版社,1998: 372.]
[44] Romanovsky V E, Osterkamp T E.Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost[J]. Permafrost and Periglacial Processes,2000, 11: 219-239.
[45] West J J, Plug L J.Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice[J]. Journal of Geophysical Research,2008, 113: 1-18.
[46] Ling Feng, Wu Qingbai.Nonlinear analysis of talik development differences under thaw lakes with different radiuses on the Qinghai-Tibet Plateau[J]. Mathematics in Practice and Theory,2014, 44(21): 250-257.
[46] [令锋, 吴青柏. 青藏高原不同半径热融湖下融区发展差异的非线性分析[J]. 数学的实践与认识,2014, 44(21): 250-257.]
[47] Yang Zhen, Wen Zhi, Ma Wei, et al.Numerical simulation on the dynamic evolution process of thermokarst lake based on the moving mesh technology[J]. Journal of Glaciology and Geocryology,2015,37(1):183-191.
[47] [杨振,温智,马巍, 等. 基于移动网格技术的热融湖动态演化过程数值模拟[J]. 冰川冻土,2015,37(1):183-191.]
[48] Carson C E, Hussey K M.The oriented lakes of Arctic Alaska[J]. Journal of Geology,1962, 70: 417-439.
[49] Pelletier J D.Formation of oriented thaw lakes by thaw slumping[J].Journal of Geophysical Research,2005,110(F02018):1-11.
[50] Hinkel K.Comment on “Formation of oriented thaw lakes by thaw slumping” by Jon D. Pelletier[J]. Journal of Geophysical Research,2006, 111: F01021. DOI:10.1029/2005JF000377.
[51] Pelletier J D.Reply to comment by Kenneth Hinkel on “Formation of oriented thaw lakes by thaw slumping”[J]. Journal of Geophysical Research,2006, 111: F01022. DOI:10.1029/2005JF000417.
[52] Plug L J, West J J.Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement[J]. Journal of Geophysical Research,2009, 114(F01002): 1-11.
[53] Matell N, Anderson R S,Overeem I, et al.Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate[J]. Computer & Geosciences,2013, 53: 69-79.
[54] Liston G E, Hall D K.An energy-balance model of lake-ice evolution[J]. Journal of Glaciology,1995, 41:373-382.
[55] Liston G E, Hall D K.Sensitivity of lake freeze-up and break-up to climate change: A physically based modeling study[J]. Annals of Glaciology,1995, 21:387-393.
[56] Roering J J, Kirchner J W, Dietrich W E.Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J]. Journal of Geophysical Research,2001, 106(B8): 16 499-16 513.
[57] Duguay C R, Flato G M, Jeffries M O, et al.Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrology Processes,2003, 17(17): 3 465-3 483.
[58] Painter S L, Moulton J D, Wilson C J.Modeling challenges for predicting hydrologic response to degrading permafrost[J]. Hydrogeology Journal,2013, 21: 221-224.
[59] Li S, Zhan H, Lai Y,et al.The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming[J]. Journal of Geophysical Research,2014, 119: 836-853.
[60] Ling Feng, Wu Qingbai.Numerical simulation of influence of thermokarst lake horizontal expansion rate on talik development beneath thermokarst lakes on Qinghai-Tibet Plateau[J]. Journal Glaciology and Geocryology,2017, 39(2): 328-335.
[60] [令锋,吴青柏. 青藏高原热融湖横向扩张速率对湖下融区发展影响的数值模拟[J]. 冰川冻土,2017, 39(2):328-335.]
[61] Wen Zhi, Yang Zhen, Yu Qihao,et al.Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method[J]. Cold Regions Science and Technology, 2016, 121(1):84-92.
[62] Batina J T.Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal,1990, 28(8):1 381-1 388.
[63] Yang Zhen, Wen Zhi, Niu Fujun, et al.Research on thermokarst lakes in permafrost regions: Present state and prospect[J]. Journal Glaciology and Geocryology, 2013, 35(6): 1 519-1 526.
[63] [杨振,温智,牛富俊,等.多年冻土区热融湖研究现状与展望[J]. 冰川冻土,2013, 35(6): 1 519-1 526.]
[64] Utili S, Crosta G B.Modeling the evolution of natural cliffs subject to weathering: 2. Discrete element approach[J]. Journal of Geophysical Research,2011, 116(F01017): 1-17. DOI:10.1029/2009JF001559.
[65] Zhou W, Huang S L.Modeling impacts of thaw lakes to ground thermal regime in northern Alaska[J]. Journal of Cold Regions Engineering,2004, 18(2): 70-87.
[66] Zhang Tingjun, Jeffries M O.Modeling inter-decadal variations of lake-ice thickness and sensitivity to climatic change in northernmost Alaska[J]. Annuals of Glaciology,2000, 31: 339-347.
[67] Zhang Tingjun, Osterkamp T E.Influence of depth hoar layer and of the seasonal snow cover on the ground thermal regime[J]. Water Resource Research,1996, 32(7): 2 075-2 086.
[68] Paola C.In modelling, simplicity isn’t simple[J]. Nature,2011, 469(7 328): 38.
[69] Xu Xuezu, Deng Yusheng.The Experimental Research on Moisture Transfer in Frozen Soil[M]. Beijing: Science Press, 1991: 41-87.
[69] [徐学祖,邓友生. 冻土中水分迁移的实验研究[M]. 北京: 科学出版社, 1991: 41-87.]
[70] Xu Xuezu, Wang Jiacheng, Zhang Lixin.Frozen Soil Physics[M]. Beijing: Science Press, 2010: 451-497.
[70] [徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 451-497.]
[71] Li Shuxun, Wu Tonghua.Permafrost temperature regime: Study method and applied analysis[J]. Journal Glaciology and Geocryology, 2004, 26(4): 377-383.
[71] [李述训,吴通华. 冻土温度状况研究方法和应用分析[J]. 冰川冻土,2004, 26(4): 377-383.]
[72] Woo M K, Guan X J.Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian high Arctic[J]. Permafrost and Periglacial Processes,2006,17(3):309-323.
[73] Pan Xicai, You Yanhui, Roth Kurt, et al.Mapping permafrost features that influence the hydrological processes of a thermokarst lake on the Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Process,2014, 25(1): 60-68.
[74] You Y, Yu Q, Pan X, et al.Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau[J]. Hydrological Processes,2017, 31: 2 429-2 437.
[75] Yoshikawa K, Hinzman L D.Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost Periglacial Processes,2003, 14: 151-160.
[76] Rowland J C, Travis B J, Wilson C J.The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost[J]. Geophysical Research Letters,2011, 38(L17504): 1-5.
[77] Qin Dahe.Climate change science and sustainable development[J]. Progress in Geography,2014, 33(7): 874-883.
[77] [秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883.]
[78] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge & New York: Cambridge University Press, 2007.
[79] Mackay J R, Burn C R.The first 20 years (1978-1979 to 1998-1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada[J]. Canadian Journal of Earth Sciences,2002, 39: 1 657-1 674.
[80] Burn C R, Smith C A S. Observation of “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada[J]. Arctic,1988, 41(1): 99-104.
[81] Shang Songhao, Mao Xiaomin, Lei Zhidong, et al.Dynamic Simulation Models of Soil Moisture and Its Applications[M]. Beijing: Science Press,2009:65-77.
[81] [尚松浩,毛晓敏,雷志栋,等. 土壤水分动态模拟模型及其应用[M]. 北京:科学出版社,2009: 65-77.]
[82] Mao Xuesong, Ma Biao, Wang Binggang.Study on Stability of Roadbed in Permafrost Regions Based on the Coupled Heat and Moisture Effect[M]. Beijing: China Communication Press, 2011: 136-148.
[82] [毛雪松,马骉,王秉刚. 基于水热耦合效应的冻土路基稳定性研究[M]. 北京:人民交通出版社,2011: 1 136-148.]
[83] Istok J D.Groundwater Modeling by the Finite Element Method[M]. Washington: American Geophysical Union, 1989: 495.
[84] Hinkel K M, Lenters J D, Sheng Y, et al.Thermokarst lakes on the Arctic Coastal Plain of Alaska: Spatial and temporal variability in summer water temperature[J]. Permafrost Periglacial Processes,2012, 23: 207-217.
[85] Lin Zhanju, Niu Fujun, Liu Hua, et al.Numerical simulation of permafrost degradation under the influence of thaw lakes on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica,2013, 87(5): 737-746.
[85] [林占举,牛富俊,刘华,等. 热融湖影响下多年冻土退化的数值模拟[J]. 地质学报, 2013, 87(5): 737-746.]
Outlines

/