Thirty Years of the Seafloor CORK Borehole Observatories: Development, Applications and Future Perspective
First author:Fang Jiasong(1961-),male, Honghu City, Hubei Province, Professor. Research areas include marine microbiology and biogeochemistry.E-mail:jsfang@shou.edu.cn
Received date: 2017-10-16
Revised date: 2017-11-28
Online published: 2018-03-06
Supported by
Project supported by the National Natural Science Foundation of China “Assess the role of piezophilic bacteria in carbon cycle of the South China Sea”(No.91328208) and “Carbon isotope fractionation in biosynthesis of lipids by gram-positive piezophilic bacteria from the deep sea and the deep biosphere”(No.41673085).
Copyright
In the past 50 years, we have witnessed remarkable progress in our understanding of the Earth and ocean system, as a result of the internationally integrated deep ocean drilling programs, the Deep Sea Drilling Program (DSDP), the Ocean Drilling Program (ODP), and the Integrated Ocean Drilling Program (IODP). One of the legacies of the deep ocean drilling programs is the development and applications of the CORK, Circulation Obviation Retrofit Kit. Earth and ocean sciences have been shifting from a traditional discontinuous, expeditionary mode toward a mode of sustained in situ observations today. The seafloor CORK observatories offer Earth, ocean and life scientists new opportunities to study multiple, interrelated deep marine subsurface processes, over time scales ranging from seconds to decades. Here, we first provided a concise examination of the development history of the CORKs, then described the first installations of ODP CORKs, the evolution of different models of CORK, and finally, summarized the scientific lessons learned in the installation and operation effort of the CORKs. In the end, we offered our perspectives on using CORKs to study geological, hydrogeological, microbiological, and biogeochemical processes in the deep marine subsurface biosphere, particularly pertaining to China’s efforts in establishing and enhancing its deep-sea and deep-biosphere research and monitoring programs.
Key words: CORK; Seafloor observatories; Oceanic crust; Deep-sea drilling.
Jiasong Fang , Jiangyan Li , Li Zhang . Thirty Years of the Seafloor CORK Borehole Observatories: Development, Applications and Future Perspective[J]. Advances in Earth Science, 2017 , 32(12) : 1297 -1306 . DOI: 10.11867/j.issn.1001-8166.2017.12.1297
[1] | Sclater J G, Jaupart C, Galson D.The heat flow through oceanic and continental crust and the heat loss of the Earth[J]. Reviews of Geophysics,1980, 18(1): 269-311. |
[2] | Paul J H, Pruis M J.Fluxes of fluid and heat from the oceanic crustal reservoir[J]. Earth and Planetary Science Letters, 2003, 216(4): 565-574. |
[3] | Fang Jiasong, Zhang Li.Explore the deep biosphere[J]. Science in China (Series D),2011,54(2): 1-9. |
[4] | Ge Shemin, Bekins Barbara, Bredehoeft John, et al. Hydrogeology program planning group final report[J]. JOIDES Journal,2002, 28(2): 24-29. |
[5] | Wang Pinxian.Opening a time tunnel through the Earth system to understand its history[J]. Science in China (Series D),2009, 39(10): 1 313-1 338. |
[5] | [汪品先. 穿凿地球系统的时间隧道[J]. 中国科学:D辑,2009,39(10):1 313-1 338.] |
[6] | Stein C A, Stein Seth.Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow[J]. Journal of Geophysical Research: Solid Earth,1994, 99(B2): 3 081-3 095. |
[7] | Jannasch H W, Davis E E, Kastner M, et al. CORK-II: Long-term monitoring of fluid chemistry, fluxes, and hydrology in instrumented boreholes at the Costa Rica subduction zone[J]. Proceedings of the Ocean Drilling Program, Initial Reports,2003, 205: 1-36, doi: 10.2973/odp.proc.ir.205.102.2003. |
[8] | Jannasch H W, Geoff W C, Plant Josh N, et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications[J]. Limnology and Oceanography Methods,2004, 2(2): 102-113. |
[9] | Wheat C G, Jannasch H W, Kastner M, et al. Fluid sampling from oceanic borehole observatories: Design and methods for CORK activities (1990-2010)[C]∥Proceedings of the International Ocean Drilling Program, Expedition Reports 327. Washington DC: Integrated Ocean Drilling Program Management International, Inc., 2011. |
[10] | Fisher A T, Wheat C G, Becker K, et al. Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge[J]. Proceedings of the Ocean Drilling Program,2011, 327, doi:10.2204/iodp.proc.327.107.2011. |
[11] | National Academy of Sciences. Illuminating the Hidden Planet: The Future of Seafloor Observatory Science[M]. Washington DC: National Academy of Sciences Press, 2000. |
[12] | Becker K, Davis E, Fisher A, et al. ODP/IODP ‘CORK’ Long-term subseafloor hydrogeological observatories[C]∥Offshore Technology Conference. Houston, Texas, USA, 2006. |
[13] | Hyndman R D, Herzen R P V, Erickson A J, et al. Heat flow measurements in deep crustal holes on the mid-Atlantic ridge[J]. Journal of Geophysical Research Atmospheres, 1976, 81(23): 4 053-4 060. |
[14] | Becker K, Langseth M G, Herzen R P V, et al. Deep crustal geothermal measurements, hole 504B, Costa Rica Rift[J]. Journal of Geophysical Research Solid Earth, 1983, 88(B4): 3 447-3 457. |
[15] | Becker K, Davis E E.A review of CORK designs and operations during the Ocean Drilling Program[J]. Proceedings of the Integrated Ocean Drilling Program, 2005, 301: 1-28. |
[16] | Geoffrey W C, Jannasch H W, Fisher A T, et al. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment[J]. Geochemistry Geophysics Geosystems, 2010, 11(7): 307-309. |
[17] | Kopf A, Freudenthal T, Ratmeyer V, et al. Simple, affordable and sustainable borehole observatories for complex monitoring objectives[J]. Geoscientific Instrumentation Methods and Data Systems Discussions,2015, 4(2): 99-109. |
[18] | Davis E E, Becker K, Pettigrew T, et al. CORK: A hydrologic seal and downhole observatory for deep-ocean boreholes[J]. Proceedings of the Ocean Drilling Program, Initial Reports,1992, 139: 43-53, doi: 10.2973/odp.proc.ir.139.103.1992. |
[19] | Graber K K, Pollard E, Jonasson B, et al. Overview of Ocean Drilling Program engineering tools and hardware[J]. ODP Technical Note, 2002, 31, doi:10.2973/odp.tn.31.2002. |
[20] | Kastner M, Becker K, Davis E, et al. New insights into the hydrogeology of the oceanic crust through long-term monitoring[J]. Oceanography,2006, 19(4): 46-57. |
[21] | Shipboard Scientific Party.Explanatory notes[J]. Proceedings of the Ocean Drilling Program, Initial Reports,2002, 196: 1-53, doi:10.2973/odp.proc.ir.196.102.2002. |
[22] | Becker K, Davis E E, Spiess F N, et al. Temperature and video logs from the upper oceanic crust, Holes 504B and 896A, Costa Rica Rift flank: Implications for the permeability of upper oceanic crust[J]. Earth and Planetary Science Letters,2004, 222(3/4): 881-896. |
[23] | Spiess F N, Boegeman D E, Lowenstein C E.First ocean-research-ship-supported fly-in re-entry to a deep ocean drill hole[J]. Marine Technology Society,1992, 26: 3-10. |
[24] | Davis Earl E, Becker Keir, Wang Kelin, et al. A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate[J]. Earth and Planetary Science Letters,2006, 242(1): 73-84. |
[25] | Davis E E, Villinger H W.Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: CORK monitoring at ODP Sites 1253 and 1255[J]. Earth and Planetary Science Letters,2006, 245(1): 232-244. |
[26] | Solomon E A, Kastner M, Wheat C G, et al. Long-term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subduction zone[J]. Earth and Planetary Science Letters,2009, 282(1/4): 240-251. |
[27] | Orcutt B N, Bach Wolfgang, Becker Keir, et al. Colonization of subsurface microbial observatories deployed in young ocean crust[J]. The ISME Journal,2011, 5:692-703, doi:10.1038/ismej.2010.157. |
[28] | Kopf A, Araki E, Toczko S.NanTroSEIZE Stage 2: Riserless observatory[J]. Proceedings of the Ocean Drilling Program, Initial Reports,2011,332, doi:10.2204/iodp.pr.332.2011. |
[29] | Fisher A T, Cowen J, Wheat C G, et al. Preparation and injection of fluid tracers during IODP Expedition 327, eastern flank of Juan de Fuca Ridge[J]. Proceedings of the Integrated Ocean Drilling Program,2011, 327, doi:10.2204/iodp.proc.327.108.2011. |
[30] | Wang Kelin, Davis Earl E.Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations[J]. Journal of Geophysical Research,1996, 101(B5): 11 483-11 495, doi:10.1029/96JB00641. |
[31] | Davis E E, Becker K.Using ODP boreholes for studying sub-seafloor hydrogeology: Results from the first decade of CORK observations[J]. Geoscience Canada, 2001, 28(4): 170-178. |
[32] | Brown K M, Tryon M D, Deshon H R, et al. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone[J]. Earth and Planetary Science Letters,2005, 238(1): 189-203. |
[33] | Orcutt B N, Larowe D E, Biddle J F, et al. Microbial activity in the marine deep biosphere: Progress and prospects[J]. Frontiers in Microbiology,2013, 4(189): 189. |
[34] | Becker N C, Geoffrey W C, Mottl M J, et al. A geological and geophysical investigation of Baby Bare, locus of a ridge flank hydrothermal system in the Cascadia Basin[J]. Journal of Geophysical Research Atmospheres, 2000, 105(B10): 23 557-23 568. |
[35] | Fisher A T, Davis E E, Becker K.Borehole-to-borehole hydrologic response across 2.4 km in the upper oceanic crust: Implications for crustal-scale properties[J]. Journal of Geophysical Research Solid Earth, 2008, 113(B7): 488-498. |
[36] | Elderfield H, Wheat C G, Mottl M J, et al. Fluid and geochemical transport through oceanic crust: A transect across the eastern flank of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 1999, 172(1/2): 151-165. |
[37] | Walker B D, Mccarthy M D, Fisher A T, et al. Dissolved inorganic carbon isotopic composition of low-temperature axial and ridge-flank hydrothermal fluids of the Juan de Fuca Ridge[J]. Marine Chemistry, 2008, 108(1/2): 123-136. |
[38] | Neira N M, Clark J F, Fisher A T, et al. Cross-hole tracer experiment reveals rapid fluid flow and low effective porosity in the upper oceanic crust[J]. Earth and Planetary Science Letters, 2016, 450: 355-365,doi:10.1016/j.epsl.2016.06.048. |
[39] | Geoffry W C, Fisher Andrew T, McManus James, et al. Cool seafoor hydrothermal springs reveal global geochemical fluxes[J]. Earth and Planetary Science Letters, 2017, 476: 178-188,doi:10.1016/j.epsl.2017.07.049. |
[40] | Huber J, Johnson H, Butterfield D, et al. Microbial life in ridge flank crustal fluids[J]. Environmental Microbiology, 2006, 8(1): 88-99. |
[41] | Hutnak M, Fisher A T, Zühlsdorff L, et al. Hydrothermal recharge and discharge guided by basement outcrops on 0.7~3.6 Ma seafloor east of the Juan de Fuca Ridge: Observations and numerical models[J]. Geochemistry Geophysics Geosystems, 2006, 7(7): 329-349. |
[42] | Jungbluth S P, Bowers R M, Lin H T, et al. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt[J]. ISME Journal, 2016, 10(8): 2 033. |
[43] | Fichtel J, K?ster J, Rullk?tter J, et al. Spore dipicolinic acid contents used for estimating the number of endospores in sediments[J]. FEMS Microbiology Ecology, 2007, 61(3): 522-532. |
[44] | Smith A, Popa R, Fisk M.et al. In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow-through device[J]. Geochemistry, Geophysics, Geosystems, 2011, 21(6), doi:10.1029/2010GC003424. |
[45] | Lomstein B A, Langerhuus A T, D’Hondt S, et al. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment[J]. Nature, 2012, 484(7 392): 101-104. |
[46] | Inagaki F, Hinrichs K U, Kubo Y, et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor[J]. Science,2015, 349(6 246): 420. |
[47] | Amend J P, LaRowe D E. Ocean sediments—An enormous but underappreciated microbial habitat[J]. Microbe, 2016, 11(12): 427-432. |
[48] | Filippidou S, Wunderlin T, Junier T, et al. A combination of extreme environmental conditions favor the prevalence of endospore-forming firmicutes[J]. Frontiers in Microbiology, 2016, 7: 1 707, doi: 10.3389/fmicb.2016.01707. |
[49] | Fang Jiasong, Kato Chiaki, Runko G M, et al. Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from ~1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor[J]. Frontiers in Microbiology, 2017, 8: 137. |
[50] | Davis E E, Becker K.Observations of natural-state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 231-248. |
[51] | Fisher A T, Wheat C G, Becker K, et al. Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge[J]. Proceedings of the Integrated Ocean Drilling Program, 2005, 301:1-39, doi:10.2204/iodp.proc.301.103.2005. |
[52] | Farr N, Tivey M, Ware J, et al. A high-speed optical modem communication system for CORK seafloor observatories[C]∥AGU Fall Meeting Abstracts. San Francisco, USA: American Geophysical Union, 2014. |
[53] | Edwards K J, Fisher A T, Geoffrey W C.The deep subsurface biosphere in igneous ocean crust: Frontier habitats for microbiological exploration[J]. Frontiers in Microbiology, 2012, 3:8, doi:10.3389/fmicb.2012.00008. |
/
〈 |
|
〉 |