Impact of Time Correlated Model Errors on Soil Moisture Estimates with the Ensemble Square Root Filter
Online published: 2015-06-25
To evaluate the impacts of time correlated error models on the estimates of soil moisture profiles with the Ensemble Square Root Filter (EnSRF), an observing system simulation experiment was set up, in which the near-surface soil moisture observations were assimilated into NOAH Land Surface Model (LSM). The experiments used a combination technique of EnSRF and state augmentation, in which both the model states and model errors were updated at the same time. The results showed that EnSRF could not successfully estimate the soil moisture profiles, if a large model bias was directly ignored in the process of data assimilation. On the contrary, the soil moisture estimates had a large improvement, if the model errors were corrected. Furthermore, the sensitive tests showed that the value of model bias,the magnitudes of observational errors and the time intervals would all influence the estimates in the different way.
Key words: EnSRF; Land data assimilation.; Soil moisture; Time related error
Ye Dan , Yang Xixi , Zhang Shuwen , Mao Fuping . Impact of Time Correlated Model Errors on Soil Moisture Estimates with the Ensemble Square Root Filter[J]. Advances in Earth Science, 2015 , 30(6) : 700 -708 . DOI: 10.11867/j.issn.1001-8166.2015.06.0700
[1] McLaughlin D. Recent developments in hydrologic data assimilation[J]. Reviews of Geophysics, 1995, 33(Suppl. 2): 977-984.
[2] Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects[J]. Progress in Natural Science, 2007, 17(8): 881-892.[李新,黄春林,车涛,等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展,2007,17(2): 163-173.]
[3] Bai Yulong, Li Xin, Han Xujun. A review of error problems for land data assimilation systems[J]. Advances in Earth Science, 2011, 26(8): 795-804.[摆玉龙,李新,韩旭军.陆面数据同化系统误差问题研究综述[J].地球科学进展,2011, 26(8): 795-804.]
[4] Evensen G. Data Assimilation: The Ensemble Kalman Filter[M]. Berlin, Heidelberg: Springer, 2007: 279.
[5] Reichle R H. Data assimilation methods in the Earth sciences[J]. Advances in Water Resources, 2008, 31(11): 1 411-1 418.
[6] Chen Jing, Chen Dehui, Yan Hong. A brief review on the development of ensemble prediction system[J]. Journal of Applied Meteorological Science, 2002, 13(4): 497-507.[陈静,陈德辉,颜宏.集合数值预报发展与研究进展[J].应用气象学报,2002,13(4): 497-507.]
[7] Nie Suping, Zhu Jiang, Luo Yong. Comparison experiments of different model error schemes in ensemble Kalman filter soil moisture assimilation [J]. Chinese Journal of Atmospheric Sciences,2010, 34(3): 580-590.[聂肃平,朱江,罗勇.不同模式误差方案在集合Kalman滤波土壤湿度同化中的比较试验[J].大气科学,2010, 34(3): 580-590.]
[8] Dee D P, Da Silva A M. Data assimilation in the presence of forecast bias[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124(545): 269-295.
[9] Zhong Jian, Huang Sixun, Fei Jianfang, et al. Dynamics of model errors: Accounting for parameters error and processes lacking error[J]. Chinese Journal of Atmospheric Sciences, 2011,35(6): 1 169-1 176.[钟剑,黄思训,费建芳,等.模式误差动力特征:模式参数误差和物理过程描绘缺失误差[J].大气科学,2011, 35(6): 1 169-1 176.]
[10] Crow W T, Van Loon E. Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture[J]. Journal of Hydrometeorology, 2006, 7(3): 421-432.
[11] Zhang S W, Zeng X, Zhang W, et al. Revising the ensemble-based Kalman filter covariance for the retrieval of deep-layer soil moisture[J]. Journal of Hydrometeorology, 2010, 11(1): 219-227.
[12] Dee D P. Bias and data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3 323-3 343.
[13] Drécourt J P, Madsen H, Rosbjerg D. Bias aware Kalman filters: Comparison and improvements[J]. Advances in Water Resources, 2006, 29(5): 707-718.
[14] Drécourt J P, Madsen H, Rosbjerg D. Calibration framework for a Kalman filter applied to a groundwater model[J]. Advances in Water Resources, 2006, 29(5): 719-734.
[15] Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7): 1 913-1 924.
[16] Koster R D, Suarez M J. Soil moisture memory in climate models[J]. Journal of Hydrometeorology, 2001, 2(6): 558-570.
[17]Mahrt L, Pan H. A two-layer model of soil hydrology[J]. Boundary-Layer Meteorology, 1984, 29(1): 1-20.
[18] Liu Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science, 2013, 28(8): 913-922.[刘彦华,张述文,毛璐,等.评估两类模式对陆面状态的模拟和估算[J].地球科学进展, 2013, 28(8): 913-922.]
[19] Campbell G S. A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science, 1974, 117(6): 311-314.
[20] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineering, 1960, 82(1): 35-45.
[21] Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J].Monthly Weather Review, 2001, 129(12): 2 884-2 903.
[22] Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003, 53(4): 343-367.
[23] Kalnay E. Atmospheric Modeling, Data Assimilation, and Predictability[M]. Cambridge:Cambridge University Press, 2003:341.
[24] Houtekamer P L, Mitchell H L. Data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review, 1998, 126(3): 796-811.
/
〈 |
|
〉 |