Articles

AGENTBASED MODELING: THE NEW ADVANCE IN GEOCOMPUTATION

Expand
  • School of Government,Peking University,Beijing  100871,China

Received date: 2002-12-23

  Revised date: 2003-05-09

  Online published: 2004-04-01

Abstract

 Agent-based modeling (ABM) is currently a new active research area in Geocomputation. The methodology of ABM is integration of the theories and technologies of complex adaptive system, artificial life and distributed artificial intelligence. The complex system such as geographical system is conceived as societies of autonomous agents that are able to act both on themselves and on their environments. The agents can communicate and interact with other agents. The determinants of an agent's behavior have a local character and there is no global constraint on the system's evolution. Therefore, it is a good alternative way of simulating the evolutional process of the spatial structure by modeling behaviors of these local active agents and their interactions. Such a multi-agent model allows a greater variety of spatial interaction, including variable extension of the spatial range of interactions, which can be defined by the connectivity of a network according to the characteristics of each agent. Moreover, instead of allowing only a few quantitative variables in non-linear equation and possible states for each cells in cellular automata, the ABM is able to integrate any qualitative or quantitative description of an agent, whose behavior may be very complicated. The flexible modeling method allows for a much more detailed representation of spatial interactions and of some local properties and also makes it possible to introduce new agents or new rules in the model without changing the other parts. This paper gives an overview on the theory background and technology advantages of ABM compared with Equation-based Modeling(EBM) and Cellular Automata(CA). Since interaction and adaptation between agents is the central task of ABM, this article gives a detail discussion on the structure, characteristics and internal mechanisms of an agent. Its related problems such as research advance and the platform of ABM are also surveyed.

Cite this article

XUE Ling,YANG Kaizhong,Shen Tiyan . AGENTBASED MODELING: THE NEW ADVANCE IN GEOCOMPUTATION[J]. Advances in Earth Science, 2004 , 19(2) : 305 -311 . DOI: 10.11867/j.issn.1001-8166.2004.02.0305

References

[1] Rees P, Turton I. Guest editorial: Geocomputation: Solving geographical problems with new computing power[J]. Environment and Planning, 1998,30:1 835-1 838.
[2] Klos T B, Nooteboom B. Agent-based computational transaction cost economics[J]. Journal of Economic Dynamics & Control, 2001, 25: 503-526.
[3] Fitoussi D, Tennenholtz M. Choosing social laws for multi-agent systems: Minimality and simplicity[J]. Artificial Intelligence, 2000, 119: 61-101.
[4] Yang Kaizhong(杨开忠), Xue Ling(薛领). Spatial complexity: Regional science in 21th[J]. Advance in Earth Sciences(地球科学进展), 2002, 17(1): 5-11(in Chinese).
[5] Allen P M, Sanglier M. A dynamic model of a central place system[J]. Geographical Analysis, 1981, 13:149-165.
[6] Allen P M, Sanglier M. Urban revolution, self-organization and decision making[J]. Environment and Planning A, 1981, 13:169-183.
[7] Couclelis H. Cellular worlds: A framework for modeling micromacro dynamics[J]. Environment and Planning A, 1985, 17:585-596.
[8] Batty M. New ways of looking at cities[J]. Nature, 1995, 377, 574.
[9] Batty M, Xie Y. From cells to cities[J]. Environment and Planning B, 1997, 21: 531-548.
[10] Holland J.H. Complex Adaptive System[M]. Boston: Winter, 1992.
[11] GellMann M. Complex adaptive systems[A]. In: George Cowan, et al,eds. Complexity: Metaphors, Models and Reality[C]. New York: Addison-Wesley, 1994.17-29.
[12] Holland J H. Hidden Order: How Adaptation Builds Complexity[M]. Boston: AddisonWesley, 1995.
[13] Nwana H S. Software agents: An overview[J]. The Knowledge Engineering Review, 1993, 11(3): 205-244.
[14] Wooldrige N, Jennings N R. Intelligent agent: Theory and practice[J].The Knowledge Engineering Review, 1995, 13(2): 115-152.
[15] Minsky M. Thesociety of Mind[M]. New York: Simona and Sohuster, 1996.
[16] Shi Zhongzhi(史忠植). Intelligent Agent and its Applications[M]. Beijing: Sciences Prsss, 2000(in Chinese).
[17] Genesereth M R, Ketchet S P. Software agents[J]. Communication of the ACM, 1993, 37(7): 48-53.
[18] Holland J H, Miller H. Artificial adaptive agents in economic theory[J]. American Economics Review, 1991, 81: 365-370.
[19] Authur W B, Holland J H, et al. Asset pricing under endogenous expectations in an artificial stock market[A]. In: Authur W B, et al,eds. The Economy as An Evolving Complex System II[C]. New York: Addison-Wesley, 1997. 15-44.
[20] Krugman P. The Self-organizing Economy[M]. New York: Blackwell Oxford, 1996. 15-22.
[21] Benenson I. Muti-agent simulation of residential dynamics in the city:Computer[J]. Environment and Urban Systems, 1998, 22: 25-42.
[22] Bura S. Multiagent systems and the dynamics of a settlement system[J]. Geographical Analysis, 1996, 28(2): 77-87.
[23] Otter H S, van der Veen A, de Vriend H J. ABLOoM: Location behaviour, spatial patterns, and agent-based modeling[J]. Journal of Artificial Societies and Social Simulation, 2001, 4(4). <http://www.soc.surrey.ac.uk/JASSS/4/4/2.html>.
[24] Sasaki Y, Box P. AgentBased Verification of von Thünen's Location Theory[J]. Journal of Artificial Societies and Social Simulation,2003,6(2). <http://jasss.soc.surrey.ac.uk/6/2/9.html>
[25] Ligtenberg A, et al. Multi-actor-based land use modelling: spatial planning using agents[J]. Landuse and Urban Planning, 2001, 56: 21-33.
[26] Torrens P M, O'Sullivan D. Cellular automata and urban simulation: Where do we go from here?[J]. Environment and Planning B, 2001, 28: 163-168.
[27] Box P W. Spatial units as agents: Making the landscape an equal player in agentbased simulations[A]. In: Gimblett H R, eds. Integrating Geographic Information Systems and AgentBased Modeling Techniques for Understanding Social and Ecological Processes, Life Sciences[C]. Oxford: Oxford University Press, 2002. 59-82.
[28] Basu N, Pryor R J, Quint T, et al. ASPEN: A microsimulation model of the economy[J]. Computational Economics, 1998, 12 (3): 223-241.

Options
Outlines

/