Orginal Article

Interdecadal Relationship between the East Asian Summer Precipitation and Global Sea Surface Temperature Anomalies

  • Xiaoyan Ye ,
  • Chongcheng Chen ,
  • Ming Luo
Expand
  • 1.National Engineering Research Center of Geospatial Information Technology, Fuzhou University,Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou 350000, China
    2.Institute of Environment,Energy and Sustainability, The Chinese University of Hong Kong,Hong Kong 999077,China

First author: Ye Xiaoyan(1990-), female, Gutian County, Fujian Province, Master student. Research areas include data mining and geographical knowledge engineering.E-mail:xiaoyanye34@126.com

Corresponding author: Luo Ming(1986-), male, Fuzhou City, Jiangxi Province, Postdoctor. Research areas include climate change and data mining.E-mail:luo.ming@hotmail.com

Received date: 2016-05-18

  Revised date: 2016-07-20

  Online published: 2016-09-20

Supported by

Project supported by the National Natural Science Foundation of China “Influences of two El Niño types on the evolution of the East Asian summer monsoon” (No.41401052)

Copyright

地球科学进展 编辑部, 2016,

Abstract

This study investigated the decadal relationship between the East Asian (EA) summer precipitation (EASP) and global sea surface temperature anomaly (SSTA) patterns. Maximum covariance analysis (MCA) was used to identify the coupling relationship between EASP and global SSTA. Four leading coupling modes were identified by MCA and they explained 27.7%,12.5%,8.9%,and 7.3% of the total variance, respectively. The spatial pattern of EASP of the first leading mode exhibited more-than-normal precipitation in most regions of EA. The second mode of EASP depicted a north-south “-+-” tripole pattern. The third one showed a “wet south and dry north” pattern, and the fourth mode exhibited a north-south “+-+” tripole pattern. The four coupling modes were suggested to be modulated by the global warming, Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Pacific Gyre Oscillation (NPGO), respectively.The atmospheric processes and mechanisms underlying such modulations were also investigated. In the first coupling mode, global warming was favorable for increasing water vapor and precipitation over most parts of EA. In the second mode, PDO weakened the EA summer monsoon circulation, and it decreased precipitation in northern and southern EA regions and increased precipitation in the central EA region. The third mode was affected by AMO, which displaced the EA trough southward and weakened the convective activity over the northern EA region, thus leading to deficient precipitation in northern EA region. In the fourth mode, the EA summer monsoon was strengthened by NPGO, thus increasing precipitation in the northern and southern regions and decreasing precipitation in the central region.

Cite this article

Xiaoyan Ye , Chongcheng Chen , Ming Luo . Interdecadal Relationship between the East Asian Summer Precipitation and Global Sea Surface Temperature Anomalies[J]. Advances in Earth Science, 2016 , 31(9) : 984 -994 . DOI: 10.11867/j.issn.1001-8166.2016.09.0984

References

[1] Huang R H, Chen J L, Wang L, et al.Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 2012, 29(5): 910-942.
[2] Huang Ronghui.Research progress on the characteristics, causes and prediction of climate disasters in China[J]. Bulletin of Chinese Academy of Sciences, 1999, 14(3): 188-192.
[2] [黄荣辉. 我国气候灾害的特征、成因和预测研究进展[J]. 中国科学院院刊, 1999, 14(3): 188-192.]
[3] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al.Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1): 15-22.
[3] [吴国雄,林海,邹晓蕾,等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014,29(1): 15-22.]
[4] Luo M, Leung Y, Zhou Y, et al.Scaling behaviors of global sea surface temperature[J]. Journal of Climate, 2015, 28:3 122-3 132.
[5] Luo M, Leung Y, Graf H F, et al.Interannual variability of the onset of the South China Sea summer monsoon[J]. International Journal of Climatology, 2016, 36(2):550-362.
[6] Gong D Y, Ho C H.Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters, 2002, 29(10): 1-4.
[7] Hoerling M P, Hurrell J W, Xu T, et al.Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming[J]. Climate Dynamics, 2004, 23(3): 391-405.
[8] Chang C P, Zhang Y, Li T.Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. Journal of Climate, 2000, 13(24): 4 310-4 325.
[9] Huang R H.Decadal variability of the summer monsoon rainfall in East Asia and its association with the SST anomalies in the tropical Pacific[J]. Clivar Exchange, 2001, 6(2): 7-8.
[10] Zhou Liantong, Huang Ronghui.Research on the characteristics of interdecadal variability of summer climate in China and its possible cause[J]. Climate and Environmental Research, 2003, 8(3): 274-290.
[10] [周连童, 黄荣辉. 关于我国夏季气候年代际变化特征及其可能成因的研究[J]. 气候与环境研究, 2003, 8(3): 274-290.]
[11] Xue F.Interannual to interdecadal variation of East Asian summer monsoon and its association with the global atmospheric circulation and sea surface temperature[J]. Advances in Atmospheric Sciences, 2001, 18(4): 567-575.
[12] Yang J, Liu Q, Xie S P, et al.Impact of Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters, 2007, 34(2): 155-164.
[13] Yang Xiuqun, Xie Qian, Zhu Yimin, et al.Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns[J]. Chinese Journal of Geophysics, 2005, 48(4): 789-797.
[13] [杨修群, 谢倩, 朱益民,等. 华北降水年代际变化特征及相关的海气异常型[J]. 地球物理学报, 2005, 48(4): 789-797.]
[14] Lu R Y, Dong B W, Ding H.Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(24): 194-199.
[15] Wang Y, Li S, Luo D.Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): 356-360.
[16] Huang Qiang, Chen Zishen.Regional study on the trends of extreme temperature and precipitation events in the Pearl River Basin[J]. Advances in Earth Science, 2014, 29(8): 956-967.
[16] [黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.]
[17] Kuang Xueyuan, Liu Jian, Lin Huijuan, et al.Comparison of East Asian summer monsoon in three climate typical periods during last millennium based on ECHO-G simulation[J]. Advances in Earth Science, 2010, 25(10): 1 082-1 090.
[17] [况雪源, 刘健, 林惠娟, 等. 近千年来三个气候特征时期东亚夏季风的模拟对比[J]. 地球科学进展, 2010, 25(10): 1 082-1 090.]
[18] Kimoto M.Simulated change of the east Asian circulation under global warming scenario[J]. Geophysical Research Letters, 2005, 32(16): 247-275.
[19] Rudolf B, Beck C, Grieser J, et al.Global Precipitation Analysis Products of the GPCC[M].Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach,2005: 1-8.
[20] Sun Weiyi, Liu Jjian, Wang Zhiyuan, et al.Modeling study on the characteristics and causes of East Asian summer monsoon precipitation on centennial time scale over the past 2000 years[J]. Advances in Earth Science, 2015, 30(7): 780-790.
[20] [孙炜毅, 刘健, 王志远. 过去2000 年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790. ]
[21] Kennedy J J, Rayner N A, Smith R O, et al.Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties[J]. Journal of Geophysical Research, 2011, 116(D14): 811-840.
[22] Compo G P, Whitaker J S, Sardeshmukh P D, et al.The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1-28.
[23] Wang Huijun, Fan Ke.Recent changes in the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences,2013, 37(2): 313-318.
[23] [王会军, 范可. 东亚季风近几十年来的主要变化特征[J]. 大气科学, 2013, 37(2): 313-318.]
[24] Shao Xie, Liao Yaoming, Liu Yanju, et al.Global major weather and climate events in 2015 and the possible cause[J]. Meteorological Monthly, 2016, 42(4): 489-495.
[24] [邵勰, 廖要明, 柳艳菊, 等. 2015年全球重大天气气候事件及其成因[J]. 气象, 2016, 42(4): 489-495.]
[25] Bretherton C S, Smith C, Wallace J M.An intercomparison of methods for finding coupled patterns in climate data[J]. Journal of Climate, 1992, 5(6): 541-560.
[26] Mantua N J, Hare S R.The Pacific decadal oscillation[J]. Journal of Oceanography, 2002, 58(1): 35-44.
[27] Trenberth K E, Shea D J.Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters, 2006, 33(12): 285-293.
[28] Lorenzo E D, Schneider N, Cobb K M, et al.North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35(8): 1-6.
[29] Zhang W, Luo M.A possible linkage of the Western North Pacific summer monsoon with the North Pacific Gyre Oscillation[J]. Atmospheric Science Letters, 2016, 17(8):437-445.
[30] Zeng G, Sun Z, Wang W C, et al.Interdecadal variability of East Asian summer monsoon and associated atmospheric circulation[J]. Advances in Atmospheric Sciences, 2007, 24(5): 915-926.
[31] Li Shuanglin, Wang Yanming, Gao Yongqi.A review of the research on the Atlantic Multidecadal Oscillation (AMO) and its climate influence[J]. Transactions of Atmospheric Sciences, 2009, 32(3):458-465.
[31] [李双林, 王彦明, 郜永祺. 北大西洋年代际振荡(AMO)气候影响的研究评述[J]. 大气科学学报, 2009, 32(3):458-465.]
[32] Wang Y, Li S, Luo D.Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D02112):1-15.
[33] Ye X Y, Zhang W, Luo M.The North Pacific Gyre Oscillation and East Asian Summer precipitation[J].Atmospheric Science Letters,2016,doi:10.1002/asl.688.
Outlines

/