Spatial-temporal Variations of H2 Concentration in Soil Gas in the Seismic Fault Zone Produced by the Wenchuan MS 8.0 Earthquake
Received date: 2017-03-23
Revised date: 2017-07-25
Online published: 2017-08-20
Supported by
Project supported by the Basic Research Project of Institute of Earthquake Science,China Earthquake Administration “Fluid geochemical characteristics of hot springs at the junction of Honghe fault and Xiaojiang fault”(No.2017IES010205); The National Natural Science Foundation of China “Degassing of CO2 along the Xianshuihe-Anninghe-Zemuhe-Xiaojiang active faults”(No.41673106)
Degassing of Hydrogen (H2) from fault may be a good indicator of fault activity. The concentration of H2 in soil gas in the seismic surface rupture zone produced by the Wenchuan MS 8.0 earthquake was investigated in twenty three measuring regions in order to explore the relationship between the spatio-temporal variations of H2 concentration in soil gas along the seismic rupture zone and the vertical displacements and aftershocks activities. The results indicated: ① the sources of H2 were directly related to from the release of natural gas reservoirs; ②the average concentration of H2 in soil gas spatially decreased from Yingxiu to Nanba; ③the magnitudes of the H2 concentration anomalies declined significantly with time. It is very significant to study the variation tendency of atmospheric environment with further research of degassing of H2 from faults.
Key words: Hydrogen; Soil gas; Wenchuan MS 8.0 earthquake.; Rupture zone
Zhou Xiaocheng, Shi Hongyu, Chen Chao, Zeng Linghua, Sun Fengxia, Li Jing, Chen Zhi, Lü, Chaojia, Huang Dan, Du Jianguo . Spatial-temporal Variations of H2 Concentration in Soil Gas in the Seismic Fault Zone Produced by the Wenchuan MS 8.0 Earthquake[J]. Advances in Earth Science, 2017 , 32(8) : 818 -827 . DOI: 10.11867/j.issn.1001-8166.2017.08.0818
[1] Sato M, Sutton A J, McGee K A, et al . Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984[J]. Journal of Geophysical Research : Solid Earth , 1986,91(B12):12 315-12 326.
[2] Chiodini G, Granieri D, Avino R, et al . Non-volcanic CO 2 Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy[J]. Geophysical Research Letters , 2010, 37(11): L11303.
[3] Chavrit D, Humler E, Grasset O. Mapping modern CO 2 fluxes and mantle carbon content all along the mid-ocean ridge system[J]. Earth and Planetary Science Letters , 2014, 387:229-239.
[4] Voltattorni N, Quattrocchi F, Gasparini A, et al . Soil gas degassing during the 2009 L’Aquila earthquake: Study of the seismotectonic and fluid geochemistry relation[J]. Italian Journal of Geosciences , 2012, 131(3):440-447.
[5] Chiodini G, Cardellini C, Amato A, et al . Carbon dioxide Earth degassing and seismogenesis in central and southern Italy[J]. Geophysical Research Letters , 2004, 31:L07615.
[6] Chiodini G, Caliro S, Cardellini C, et al . Geochemical evidence for and characterization of CO 2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes[J]. Earth and Planetary Science Letters , 2011, 304:389-398.
[7] Lewicki J, Brantley S L. CO 2 degassing along the San Andreas fault, Parkfield, California[J]. Geophysical Research Letters , 2000,27:5-8.
[8] Tao M, Xu Y, Shi B, et al . Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China[J]. Science in China ( Series D ), 2005, 48 (7): 1 074-1 088.
[9] Wakita H, Nakamura Y, Kita I, et al . Hydrogen release: New indicator of fault activity[J]. Science , 1980, 210:188-190.
[10] Sugisaki R, Ido M, Takeda H, et al . Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. Journal of Geology , 1983, 91:239-258.
[11] Takehana Y, Kobayashi Y, Wakita H, et al . Emission of hydrogen along the Negoro fault, Median Tectonic Line[J]. Journal of the Seismological Society of Japan , 1982, 35:103-115.
[12] Satake H, Ohashi M, Hayashi Y. Discharge of H 2 from the Atotsugawa and Ushikubi Faults, Japan, and its relatioin to earthquakes[J]. Pure and Applied Geophysics , 1984,122(2/4):185-193.
[13] Ito T, Nagamine K, Yamamoto K, et al . Preseismic hydrogen gas anomalies caused by stress-corrosion process preceding earthquakes[J]. Geophysical Research Letters , 1999, 26(13):2 009-2 012.
[14] Hirose T, Kawagucci S, Suzuki K. Mechanoradical H 2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere[J]. Geophysical Research Letters , 2011, 38: L17303.
[15] Zhou X, Du J, Chen Z, et al . Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan M S 8.0 earthquake, southwestern China[J]. Geochemical Transactions , 2010,11:5.
[16] Zhang Peizhen, Deng Qidong, Zhang Zhuqi, et al . Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Science in China ( Series D ), 2013, 43(10):1 607-1 620.
[张培震,邓起东,张竹琪,等.中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:D辑,2013,43(10):1 607-1 620.]
[17] Xu Xiwei, Chen Guihua, Yu Guihua, et al . Reevaluation of surface rupture parameters of the 5·12 Wenchuan earthquake and its tectonic implication for Tibetan uplift[J]. Chinese Journal Geophysics , 2010, 53(10):2 321-2 336.
[徐锡伟,陈桂华,于贵华,等.5·12汶川地震地表破裂基本参数的再论证及其构造内涵分析[J]. 地球物理学报,2010,53(10):2 321-2 336.]
[18] Yu G, Xu X, Klinger Y, et al . Fault-scarp Features and cascading-rupture model for the M w 7.9 Wenchuan Earthquake, Eastern Tibetan Plateau, China[J]. Bulletin of the Seismological Society of America , 2010, 100(5B):2 590-2 614.
[19] Fu B, Shi P, Guo H, et al . Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences , 2011, 40(4):805-824.
[20] Zhao Jingtie, Tang Qian, Lan Xiaowen, et al . Analysis of underground high-pressure gas to Wenchuan Earthquake disaster impact[J]. Technology for Earthquake Disaster Prevention , 2009, 4(4):40-416.
[赵京轶,汤倩,兰晓雯,等.地下高压气体对汶川地震灾害的作用分析[J]. 震灾防御技术,2009, 4(4):40-416.]
[21] Zheng G, Xu S, Liang S, et al . Gas emission from the Qingzhu River after the 2008 Wenchuan Earthquake, Southwest China[J]. Chemical Geology , 2013, 339:187-193.
[22] Zhou X, Chen Z, Cui Y. Environmental impact of CO 2 , Rn, Hg degassing from the rupture zones produced by Wenchuan M S 8.0 earthquake in western Sichuan, China[J]. Environmental Geochemistry and Health , 2016, 38:1 067-1 082.
[23] Tang Rongchang, Han Weibin. Earthquake and Active Fault in Sichuan[M]. Beijing: Seismological Press,1993.
[唐荣昌,韩渭宾. 四川活动断裂与地震[M]. 北京:地震出版社,1993.]
[24] Burchfiel B C, Chen Z, Liu Y, et al . Tectonics of the Longmen Shan and adjacent regions central China[J]. International Geology Review , 1995, 37:661-735.
[25] Lin A, Ren Z, Jia D, et al . Co-seismic thrusting rupture and slip distribution produced by the 2008 M w 7.9 Wenchuan earthquake, China[J]. Tectonophysics , 2009, 471(3/4): 203-215.
[26] Zhou X, Wang W, Chen Z, et al . Hot spring gas geochemistry in Western Sichuan Province, China after the Wenchuan M S 8.0 Earthquake[J]. Terrestrial Atmospheric and Oceanic Sciences , 2015, 26(4):361-373.
[27] Mamyrin B A, Anufrier G S, Kamensky I L, et al . Determination of the isotopic composition of helium in the atmosphere[J]. Geochemistry International , 1970, 7: 498-505.
[28] Neal C, Stanger G. Hydrogen generation from mantle source rocks in Oman[J]. Earth and Planetary Science Letters , 1983, 66: 315-320.
[29] Hern??ndez P, Pérez N, Salazar J, et al . Soil gas CO 2 , CH 4 and H 2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain[J]. Journal of Volcanology and Geothermal Research , 2000, 103(1): 425-438.
[30] Kameda J, Saruwatari K, Tanaka H.H 2 generation in wet grinding of granite and single-crystal powders and implications for H 2 concentration on active faults[J]. Geophysical Research Letters , 2003,30(20):2 063.
[31] Kameda J, Saruwatari K, Tanaka H. H 2 generation by dry grinding of kaolinite[J]. Journal of Colloid and Interface Science , 2004, 275:225-228.
[32] Kita I, Matsuo S, Wakita H. H 2 generation by reaction between H 2 O and crushed rock: An experimental study on H 2 degassing from the active fault zone[J]. Journal of Geophysical Research , 1982, 87(B13): 10 789-10 795.
[33] Lin L H, Hall J, Johanna L P, et al . Radiolytic H 2 in continental crust: Nuclear power for deep subsurface microbial communities[J]. Geochemistry Geophysics Geosystems , 2005,6:Q07003.
[34] Katayama I, Kurosaki I, Hirauchi K. Low silica activity for hydrogen generation during serpentinization: An example of natural serpentinites in the Mineoka ophiolite complex, central Japan[J]. Earth and Planetary Science Letters , 2010, 298:199-204.
[35] Libert M, Bildstein O, Esnault L, et al . Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories[J]. Physics and Chemistry of the Earth , 2011, 36:1 616-1 623.
[36] Ozima M, Podosek F A. Noble Gas Geochemistry[M]. Cambridge: Cambridge University Press,1983.
[37] Ballentine C J, Marty B, Sherwood L B, et al . Neon isotopes constrain convection and volatile origin in the Earth’s mantle[J]. Nature , 2005, 433:33-38.
[38] Wang Huan, Li Haibing, Pei Junling, et al . Structural and Lithologic characteristics of the Wenchuan earthquake fault zone and its relationship with the seismic activity[J]. Quaternary Sciences , 2010, 30(4): 768-778.
[王焕,李海兵,裴军令,等. 汶川地震断裂带结构、岩性特征及其与地震活动的关系[J]. 第四纪研究, 2010, 30(4):768-778.]
[39] Liu Shugen,Deng Bin,Li Zhiwu, et al . The texture of sedimentary basin-orogenic belt system and its influence on oil/gas distribution: A case study from Sichuan basin[J]. Acta Petrologica Sinica , 2011, 27(3):621-635.
[刘树根,邓宾,李智武,等.盆山结构与油气分布——以四川盆地为例[J]. 岩石学报, 2011, 27(3):621-635.]
[40] Zhao Jiancheng, Liu Shugen, Sun Wei, et al . Analysis on petroleum preservation condition in the coupling area between Longmen Mountain and Sichuan Basin[J]. Lithologic Reservoirs , 2011, 23(1):79-89.
[赵建成,刘树根,孙玮,等. 龙门山与四川盆地结合部的油气保存条件分析[J]. 岩性油气藏,2011,23(1):79-89.]
[41] Zhu G, Zhang S, Huang H, et al . Gas genetic type and origin of hydrogen sulfide in the Zhongba gas field of the western Sichuan Basin, China[J]. Applied Geochemistry , 2011,26:1 261-1 273.
[42] Shang Y J, Liu J Q, Liu D A, et al . Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake[J]. China Geomorphology , 2015, 231:162-168.
[43] Cui Yueju,Li Jing,Wang Yanyan, et al .Application of gas remote sensing technique to earthquake monitoring[J]. Advances in Earth Science ,2015,30(2): 284-294.
[崔月菊,李静,王燕艳,等.遥感气体探测技术在地震监测中的应用[J].地球科学进展,2015,30(2): 284-294.]
[44] Gong Z, Li H, Lao C, et al . Real-time drilling mud gas monitoring records seismic damage zone from the 2008 M w 7.9 Wenchuan earthquake[J]. Tectonophysics , 2015, 639:109-117.
[45] Zhou Xiaocheng, Sun Fengxia, Chen Zhi, et al . Degassing of CO 2 , Rn and Hg in the rupture zones produced by Wenchuan M S 8.0 earthquake[J]. Acta Petrologica Sinica ,2017, 33(1):291-303.
[周晓成,孙凤霞,陈志,等. 汶川 M S 8.0地震破裂带CO 2 、CH 4 、Rn和Hg脱气强度[J].岩石学报,2017,33(1):291-303.]
[46] Evans J P, Forster C B, Goddard J V. Permeability of fault-related rocks, and implication for hydraulic structure of fault zones[J]. Journal of Structural Geology , 1997, 19(11):1 393-1 404.
[47] Chen Jianye, Yang Xiaosong, Dang Jiaxiang, et al . Internal structure and permeability of Wenchuan earthquake fault[J]. Chinese Journal Geophysics , 2011, 54(7): 1 805-1 816.
[陈建业, 杨晓松, 党嘉祥, 等.汶川地震断层带结构及渗透率[J]. 地球物理学报, 2011,54(7): 1 805-1 816.]
[48] Tan X, Yuan R, Xu X, et al . Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 M w 7.9 Wenchuan Earthquake, China[J]. Journal of Asian Earth Sciences , 2012, 58:132-142.
[49] Hua Wei, Chen Zhangli, Zheng Sihua. A study on segmentation characteristics of aftershock source parameters of Wenchuan M 8.0 earthquake in 2008[J]. Chinese Journal Geophysics , 2009,52(2): 365-371.
[华卫, 陈章立, 郑斯华. 2008年汶川8.0级地震序列震源参数分段特征的研究[J].地球物理学报, 2009, 52(2): 365-371.]
[50] Yi Guixi, Long Feng, Zhang Zhiwei. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 M S 8.0 Wenchuan earthquake[J]. Chinese Journal Geophysics ,2012,55(4):1 213-1 227.
[易桂喜, 龙锋, 张致伟.汶川 M S 8.0地震余震震源机制时空分布特征[J].地球物理学报, 2012,55(4): 1 213-1 227.]
[51] Cao Junxing, Liu Shugen, He Xiaoyan, et al . Dynamic coupling mechanism between Longmenshan and Sichuan Basin and its impact on the hydrocarbon migration in West Sichuan based on the analysis of the characteristics of Wenchuan earthquake[J]. Journal of Chengdu University of Technology ( Science & Technology Edition ), 2009, 36(6):605-616.
[曹俊兴,刘树根,何晓燕,等.从汶川地震分析龙门山与四川盆地的动力耦合机制及其对川西深层油气运移聚散的影响[J]. 成都理工大学学报:自然科学版,2009,36(6):605-616.]
[52] Ehhalt D H. Gas phase chemistry of the troposphere[M]∥Sellner R,ed. Global Aspects of Atmospheric Chemistry.New York:Springer, 1999:21-109.
[53] Hauglustaine D A, Ehhalt D H. A three-dimensional model of molecular hydrogen in the troposphere[J]. Journal of Geophysical Research , 2002,107 (D17):4 330.
[54] Warwick N J, Bekki S, Nisbet E G, et al . Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model[J]. Geophysical Research Letters , 2004,31(5),doi:10.1029/2003GL019224.
[55] Ramirez R M, Kopparapu R, Zugger M E, et al . Warming early Mars with CO 2 and H 2 [J]. Natural Geoscience , 2014,7:59-63.
[56] Wang Sicheng, Fang Hanxian,Yang Shenggao, et al . Numerical simulation of ionoshperic modification by release[J]. Transactions of Atmospheric Sciences , 2013,36(4):499-503.
[汪四成,方涵先,杨升高,等.H 2 释放扰动电离层的数值模拟[J].大气科学学报,2013,36(4):499-503.]
[57] Freund F. Pre-earthquake signals: Underlying physical processes[J]. Journal of Asian Earth Sciences , 2011, 41(4):383-400.
[58] Cui Yueju,Du Jianguo, Li Ying, et al . Gas geochemical characteristics of the Zhang-Bo seismic zone extracted from hyper-spectral data[J]. Advances in Earth Science ,2016, 31(1):59-65.
[崔月菊,杜建国,李营,等.张渤地震带高光谱气体地球化学特征[J].地球科学进展,2016,31(1):59-65.]
/
〈 |
|
〉 |