Orginal Article

Progresses and Perspectives of Research of the Evolution of Kimberlite and Evaluation for Diamond Potential

  • Zhijun Yang ,
  • Shanshan Huang ,
  • Yaoming Chen ,
  • Xiaoxiao Li ,
  • Xuan Zeng ,
  • Wenxiu Zhou
Expand
  • 1.School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, China
    2.Guangdong Provincial Key Laboratory of Mineral Resource Exploration & Geological Processes, Guangzhou 510275, China

Received date: 2016-03-27

  Revised date: 2016-06-23

  Online published: 2016-07-10

Supported by

Foundation item:Project supported by the National Natural Science Foundation of China “Formation mechanism of placer diamond polycrystalline aggregates from the western part of the Yangtze Craton and their response to deep earth”(No.41373025), “Study on the micro-structure, micro-component typomorphic characteristics of natural diamond polycrystalline from North China craton and their geological significance”(No.41073021)

Copyright

地球科学进展 编辑部, 2016,

Abstract

Kimberlite is an effective vector for researches and discussions on mantle dynamics process, lithosphere evolution and other major scientific problems, which plays an important role in revealing the forming environment, origin, source and prospecting of diamond. Currently, the developing research process of Kimberlite is still hampered by several key scientific problems, such as the evolution and the significance of the Kimberlite, evaluation for diamond potential and so on. Based on high-pressure melt simulation experiments, researches about matrix mineral, fine syngenetic inclusion (cognate xenolith?) and cryptocrystalline in the margin area of Kimberlite pipe, it seems that the initial composition features of Kimberlitic magma can be effectively analyzed. However, these experiments and researches are not only difficult to identify source characteristics of Kimberlitic magma efficiently, but also difficult to distinguish those effects on magma from which is assimilation/contamination, fluid fractionation or devitrification. Lacking of systematic research reports about recrystallization and (or) regrowth mineral on micro-composition and micro-structure, it is hard to efficiently and accurately analyze the changes and degassing effects in Kimberlitic magma, so far as to reveal the process of Kimberlitic magma evolution. Although Kimberlite diamond potential can be evaluated based on mineral assemblage, water content of olivine, there still exist some kinds of problems, like the index system being too simple, and the data accumulation being too little. Carrying out the fine micro-fabric studies between diamond-bearing Kimberlite and non diamond-bearing one can establish the scientific foundation for rebuilding the Kimberlitic magma evolution mechanism effectively and reveal the response to deep geological process. Meanwhile, on the basis of known diamond mines, a model for initial grade prediction of diamond and analysis of preservation potential can be set up to realize final purpose to evaluate the diamond potential in unknown Kimberlite areas in effect validity.

Cite this article

Zhijun Yang , Shanshan Huang , Yaoming Chen , Xiaoxiao Li , Xuan Zeng , Wenxiu Zhou . Progresses and Perspectives of Research of the Evolution of Kimberlite and Evaluation for Diamond Potential[J]. Advances in Earth Science, 2016 , 31(7) : 700 -707 . DOI: 10.11867/j.issn.1001-8166.2016.07.0700.

References

[1] Ai Qun, Yang Zhijun, Zeng Xiangqing, et al.Study on the FTIR Spectra of OH in Olivines from menyin Kimberlite[J].Spectroscopy and Spectral Analysis,2013,(9):2 374-2 378.
[1] [艾群,杨志军,曾祥清,等. 山东蒙阴金伯利岩中橄榄石的OH红外光谱研究[J]. 光谱学与光谱分析, 2013,(9):2 374-2 378.]
[2] Tang Yanjie,Zhang Hongfu,Ying Jifeng, et al.Indicative significance of Olivine in mantle peridotites[J]. Journal of Earth Sciences and Environment,2011, 33(1):24-33.
[2] [汤艳杰,张宏福,英基丰,等. 地幔橄榄岩中橄榄石的指示意义[J]. 地球科学与环境学报, 2011, 33(1):24-33.]
[3] Tang Y, Zhang H, Nakamura E, et al.Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths[J]. Contributions to Mineralogy and Petrology, 2011, 161(6): 845-861.
[4] Sparks R S J, Brooker R A, Field M, et al. The nature of erupting Kimberlite melts[J]. Lithos, 2009, 112(Suppl.):429-438.
[5] Mitchell R H.Petrology of hypabyssal Kimberlites: Relevance to primary magma compositions[J].Journal of Volcanology and Geothermal Research, 2008, 174(1/3):1-8.
[6] Peslier A H, Woodland A B, Wolff J A.Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa[J]. Geochimica et Cosmochimica Acta, 2008, 72(11): 2 711-2 722.
[7] Matveev S, Stachel T.FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration[J].Geochimica et Cosmochimica Acta, 2007, 71(22):5 528-5 543.
[8] Basson I J, Creus P K, Anthonissen C J,et al.Structural analysis and implicit 3D modelling of high-grade host rocks to the Venetia Kimberlite diatremes, Central zone, Limpopo Belt, South Africa[J]. Journal of Structural Geology, 2016,86: 47-61.
[9] Kamenetsky V S, Yaxley G M.Carbonate-silicate liquid immiscibility in the mantle propels Kimberlite magma ascent[J]. Geochimica et Cosmochimica Acta, 2015,158: 48-56
[10] Dalton J A, Presnall D C.The continuum of primary carbonatitic â Kimberlitic Melt compositions in equilibrium with Lherzolite: Data from the System CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa[J]. Journal of Petrology, 1998, 39(11/12): 1 953-1 964.
[11] Dongre A N, Viljoen K S, Chalapathi Rao N V,et al. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: Insights from EPMA and Raman spectroscopy[J]. Mineralogy and Petrology, 2016,110(2/3): 295-307.
[12] Willcox A, Buisman I, Sparks R S J,et al. Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the Kimberlitic Igwisi Hills volcanoes, Tanzania[J]. Chemical Geology, 2015,405: 82-101.
[13] Le Roex A P. Petrogenesis of group I kimberlites from kimberley, South Africa: Evidence from bulk-rock geochemistry[J]. Journal of Petrology, 2003, 44(12): 2 261-2 286.
[14] Zhao D, Zhang Y, Essene E J.Electron probe microanalysis and microscopy: Principles and applications in characterization of mineral inclusions in chromite from diamond deposit[J]. Ore Geology Reviews, 2015,65: 733-748
[15] Kavanagh J L, Sparks R S J. Temperature changes in ascending kimberlite magma[J]. Earth and Planetary Science Letters, 2009, 286(3/4): 404-413.
[16] Kamenetsky V S,Belousova E A, Giuliani A, et al.Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts[J]. Chemical Geology, 2014, 383: 76-85.
[17] Eggler D H. Role of CO2 in Melting Processes in the Mantle[R]. Carnegie Institution of Washington Yearbook1972-1973, 1973.
[18] Le Pioufle A, Canil D.Iron in monticellite as an oxygen barometer for kimberlite magmas[J]. Contributions to Mineralogy and Petrology, 2012,163(6):1 033-1 046.
[19] Mitchell R H. Kimberlites, Orangeites,Related Rocks[M].New York:Plenum Press, 1995.
[20] Pell J, Russell J K, Zhang S.Kimberlite emplacement temperatures from conodont geothermometry[J]. Earth and Planetary Science Letters, 2015,411: 131-141.
[21] Лазько Е Е, Zhu Hebao. Olivine in Kimberlite and its genesis[J]. Geology-Geochemistry,1983,9:22-25.
[21] [Лазько Е Е,朱和宝. 金伯利岩中的橄榄石及其成因[J]. 地质地球化学, 1983,9:22-25.]
[22] Dong Zhenxin.Kimberlite in China[M].Beijing:Science Press, 1994.
[22] [董振信. 中国金伯利岩[M]. 科学出版社, 1994.]
[23] Bulanova G P.The formation of diamond[J]. Journal of Geochemical Exploration, 1995, 53: 1-23.
[24] Ren Xirong.The garnets and diopsides from deep-seated xenoliths in the kimberlites in Shandong[J].Geology of Shandong,1985,(2): 52-60.
[24] [任喜荣. 山东金伯利岩中深源捕虏体的石榴石和透辉石[J]. 山东地质, 1985,(2): 52-60.]
[25] Xu Renyan.Statistical analysis for composition characteristics of Pyrope and the diomond content of Kimberlite[J].Computing Techniques for Geophysical and Geochemical Exploration,1988,(3): 220-228.
[25] [徐人棪. 镁铝榴石成分特征的统计分析与金伯利岩含矿性[J]. 物探化探计算技术, 1988,(3): 220-228.]
[26] Frick C.The garnets in kimberlite and in the associated griquaite and ultramafic nodules[J]. Contributions to Mineralogy & Petrology, 1972, 35(1): 63-76.
[27] Griffin W L, Smith D, Boyd F R, et al.Trace-element zoning in garnets from sheared mantle xenoliths[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 561-567.
[28] Matveev S, Stachel T.Evaluation of kimberlite diamond potential using FTIR spectroscopy of xenocrystic olivine[J]. Lithos, 2009, 112:36-40.
[29] Grant K, Ingrin J, Lorand J P, et al.Water partitioning between mantle minerals from peridotite xenoliths[J]. Contributions to Mineralogy and Petrology, 2007, 154(1): 15-34.
[30] Demouchy S, Mackwell S.Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine[J]. Physics and Chemistry of Minerals, 2006, 33(5): 347-355.
[31] Zhang Hongfu,Ying Jifeng,Tang Yanjie, et al.Heterogeneity of Mesozoic and Cenozoic lithospheric mantle beneath the eastern North China Craton: Evidence from olivine compositional mapping[J]. Acta Petrologica Sinica ,2006, 22(9): 2 279-2 288.
[31] [张宏福,英基丰,汤艳杰,等. 华北东部中、新生代岩石圈地幔的不均一性:来自橄榄石的组成填图结果[J]. 岩石学报, 2006, 22(9): 2 279-2 288.]
[32] Matsyuk S S, Langer K.Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform[J]. Contributions to Mineralogy and Petrology, 2004, 147(4): 413-437.
[33] Bell D R.Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery Kimberlite, South Africa[J]. Journal of Petrology, 2004, 45(8): 1 539-1 564.
[34] Jia Zubing,Xia Qunke,Tian Zhenzhen.Style of volcanic eruption and volatile content[J]. Acta Petrologica Sinica, 2014,30(12): 3 701-3 708.
[34] [贾祖冰,夏群科,田真真. 火山喷发形式与挥发分含量[J]. 岩石学报, 2014,30(12): 3 701-3 708.]
[35] Le Pioufle, Canil A D.Iron in monticellite as an oxygen barometer for kimberlite magmas[J]. Contributions to Mineralogy and Petrology, 2012,163(6):1 033-1 046.
[36] Castillo-Oliver M, Gali S, Melgarejo J C,et al.Trace-element geochemistry and U-Pb dating of perovskite in kimberlites of the Lunda Norte province (NE Angola): Petrogenetic and tectonic implications[J].Chemical Geology,2016,426: 118-134.
[37] Zhao Xin, Shi Guanghai, Zhang Ji.Review of lithospheric diamonds and their mineral inclusions[J].Advances in Earth Science,2015,30(3):310-322.
[37] [赵欣, 施光海,张骥.岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015,30(3): 310-322.]
[38] Agrosì G, Nestola F, Tempesta G,et al. X-ray topographic study of a diamond from Udachnaya: Implications for the genetic nature of inclusions[J]. Lithos, 2016,248/251:153-159.
[39] Kaur G, Mitchell R H.Mineralogy of the P-12 K-Ti-richterite diopside olivine lamproite from Wajrakarur, Andhra Pradesh, India: Implications for subduction-related magmatism in eastern India[J].Mineralogy and Petrology, 2016,110(23): 223-245.
[40] Brett R C, Russell J K, Moss S.Origin of olivine in kimberlite: Phenocryst or impostor?[J]. Lithos, 2009, 112:201-212.
[41] Jones T J, Russell J K, Porritt L A,et al.Morphology and surface features of olivine in kimberlite: Implications for ascent processes[J].Solid Earth, 2014,5(1): 313-326.
Outlines

/