Orginal Article

Response and Feedback of Marine Carbon Sink to Climate Change

  • Nianzhi Jiao ,
  • Chao Li ,
  • Xiaoxue Wang
Expand
  • 1.State Key Laboratory of Marine Environmental Science, Xiamen University, Fujian 361005, China
    2.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
    3.South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China

Received date: 2016-07-06

  Revised date: 2016-07-08

  Online published: 2016-07-10

Supported by

Project supported by the National Basic Research Program of China “Processes and mechanisms of carbon sequestration by microbial carbon pump in the ocean”(No.2013CB955700)

Copyright

地球科学进展 编辑部, 2016,

Abstract

The response and feedback of ocean carbon sequestration to climate changes is a international hot topic and requires large spatial/temporal scale, collaborative and multi-disciplinary research. In the first conference of GRC Ocean biogeochemistry, scientists focus on three biologically-driven ocean carbon pumps (Biological Pump, BP; Microbial Carbon Pump, MCP; Carbonate Counter Pump, CCP) and their environmental and climate consequences. As a sister meeting in China, we organized the session to show the efforts and progress of ocean carbon sequestration of Chinese scientists. The microbial ecological processes of phytoplankton, bacteria, archaea and viruses and interactions between them were highlighted in the session. Use coral reefs in the South China Sea as an example, the presenters and the participants come to an agreement that interdisciplinary collaborations are needed to ensure a comprehensive understanding of the interactions between microbes and their geochemical environment and the consequences of microbial processing of carbon on outgassing of CO2 and carbon sequestration. The session also have presentations focusing on paleo-environmental reconstruction for carbon sinks as well as their paleo-ecological effects in ancient oceans with time spanning from the 1.8~0.8 Ga Proterozoic to the 2.5 Ma Quaternary. These talks provide specific geological cases for the oceanic carbon sink research and convey the emerging geological view of paleooceanic carbon sinks to the research community of modern ocean carbon sinks. As a summary, the discussion in this session of biological pump, microbial carbon pump and carbonate counter pump shows the latest research progress and future development trend in this field.

Cite this article

Nianzhi Jiao , Chao Li , Xiaoxue Wang . Response and Feedback of Marine Carbon Sink to Climate Change[J]. Advances in Earth Science, 2016 , 31(7) : 668 -681 . DOI: 10.11867/j.issn.1001-8166.2016.07.0668.

References

[1] Jiao Nianzhi.On the tendency of ocean carbon sequestration from Gordon Research Conferences[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[1] [焦念志. 从戈登科学前沿论坛看海洋碳汇研究动向[C]//第四届地球系统科学大会摘要.上海,2016.]
[2] Jiao Nianzhi, Zhang Chuanlun, Li Chao, et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J]. Science in China(Series D), 2012, 43(1):1-18.
[2] [焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学:D辑,2012, 43(1):1-18.]
[3] Anbar A D, Knoll A H.Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science,2002, 297(5 584): 1 137-1 142.
[4] Luo G, Junium C K, Kump L R, et al.Shallow stratification prevailed for~ 1700 to~ 1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton[J]. Earth and Planetary Science Letters,2014, 400: 219-232.
[5] Pisarevsky S A, Elming S A, Pesonen L J, et al.Mesoproterozoic paleogeography: Supercontinent and beyond[J]. Precambrian Research,2014, 244: 207-225.
[6] Hu Yongyun, Wang Yuwei, Liu Yonggang.Ocean circulation and stratification during the Boring Billion[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[6] [胡永云,王玉玮,刘永岗.Boring Billion时期的大洋环流与海洋层结[C]//第四届地球系统科学大会摘要. 上海,2016.]
[7] Hoffman P F, Kaufman A J, Halverson G P, et al.A Neoproterozoic snowball earth[J].Science,1998, 281(5 381): 1 342-1 346.
[8] Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews,2012, 110(1): 26-57.
[9] Grotzinger J P, Fike D A, Fischer W W.Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience,2011, 4(5): 285-292.
[10] Rothman D H, Hayes J M, Summons R E.Dynamics of the Neoproterozoic carbon cycle[J]. Proceedings of the National Academy of Sciences,2003, 100(14): 8 124-8 129.
[11] Fike D A, Grotzinger J P, Pratt L M, et al.Oxidation of the Ediacaran ocean[J].Nature,2006, 444(7 120): 744-747.
[12] McFadden K A, Huang J, Chu X, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J].Proceedings of the National Academy of Sciences,2008, 105(9): 3 197-3 202.
[13] Swanson-Hysell N L, Rose C V, Calmet C C, et al. Cryogenian glaciation and the onset of carbon-isotope decoupling[J].Science,2010, 328(5 978): 608-611.
[14] Wang X, Jiang G, Shi X, et al.Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China[J]. Precambrian Research,2016, 273: 53-66.
[15] Li C, Love G D, Lyons T W, et al.A stratified redox model for the Ediacaran ocean[J].Science,2010, 328(5 974): 80-83.
[16] Chang Huajin, Chu Xuelei, Feng Lianjun,et al.Euxinic waters in Early Cambrian Nanhua Basin[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[16] [常华进,储雪蕾,冯连君, 等.早寒武世早期南华盆地存在硫化的水体[C]//第四届地球系统科学大会摘要.上海,2016.]
[17] Shi Wei, Li Chao.Large C-isotope excursion events and spatiotemporal oceanic oxygenation in Ediacaran: Evidence from sedimentary S-isotope records preserved in Ediacaran Doushantuo Formation[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[17] [石炜,李超.埃迪卡拉纪极端碳同位素负偏事件与海洋时空氧化:来自硫同位素的证据[C]//第四届地球系统科学大会摘要. 上海,2016.]
[18] Chang Biao,Luo Genming, Huang Junhua, et al.Large C-isotope excursion events and the oxidation of oceanic dissolved organic carbon reservoir: Evidence from paleo-temperature records preserved in Ediacaran Doushantuo Formation[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[18] [常标,罗根明,黄俊华,等.埃迪卡拉纪极端碳同位素负漂事件与海洋溶解有机碳库的氧化:来自古温度的证据[C]//第四届地球系统科学大会摘要.上海,2016.]
[19] Xie S, Pancost R D, Huang J, et al.Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J].Geology,2007, 35(12): 1 083-1 086.
[20] Song H, Wignall P B, Tong J, et al.Two pulses of extinction during the Permian-Triassic crisis[J].Nature Geoscience,2013, 6(1): 52-56.
[21] Xie Shucheng, Luo Genming, Yin Hongfu.Relationships and environmental effects between carbon cycling and microbes during biological extinction 0.25 billion years ago[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[21] [谢树成,罗根明,殷鸿福. 2.5亿年前生物大灭绝期间碳循环与微生物之间的关系及其生态效应[C]//第四届地球系统科学大会摘要. 上海,2016.]
[22] Sun Y, Joachimski M M, Wignall P B, et al.Lethally hot temperatures during the Early Triassic greenhouse[J]. Science,2012, 338(6 105): 366-370.
[23] Clarkson M O, Kasemann S A, Wood R A, et al.Ocean acidification and the Permo-Triassic mass extinction[J]. Science,2015, 348(6 231): 229-232.
[24] Wang P X, Li Q Y, Tian J, et al.Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J]. National Science Review,2014, 1(1): 119-143.
[25] Wang P, Tian J, Lourens L J.Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J]. Earth and Planetary Science Letters,2010, 290(3): 319-330.
[26] Russon T, Paillard D, Elliot M.Potential origins of 400-500 kyr periodicities in the ocean carbon cycle: A box model approach[J].Global Biogeochemical Cycles,2010, 24(2),doi:10.1029/2009GB003586.
[27] Jiao N, Herndl G J, Hansell D A, et al.Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J].Nature Reviews Microbiology,2010, 8(8): 593-599.
[28] Ma Wentao, Wang Pinxian, Tian Jun.Modeling 400-500-kyr Pleistocene carbon isotope cyclicity through variations in the dissolved organic carbon pool[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[29] Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J].Geophysical Research Letters,2005, 32(1):1-4.
[30] Dai Minhan, Wu Kai, Meng Feifei, et al.Net dissolved organic carbon production and carbon partitioning in the marginal seas[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[30] [戴民汉,吴凯,孟菲菲,等.边缘海中溶解有机碳的生产和碳在不同形态之间的分配[C]//第四届地球系统科学大会摘要.上海,2016.]
[31] Wu K, Dai M, Chen J, et al.Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015, 122: 41-51.
[32] Tao S Q, Timothy I, Eglinton D, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J].Geochimica et Cosmochimica Acta,2016,in press.
[33] Zhao Meixun,Yu Meng, Ding Yang, et al.Sources, age characteristics and carbon sink implications of sedimentary organic matter in China marginal seas[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[33] [赵美训,于蒙,丁杨,等.我国边缘海沉积有机质来源、年龄及其碳汇意义[C]//第四届地球系统科学大会摘要.上海,2016.]
[34] Yan Hongqiang, Yu Kefu, Tan Yehui.Recent development in the research of carbon cycle in coral reef ecosystem[J]. Acta Ecologica Sinica,2009, 29(11): 6 207-6 215.
[34] [严宏强,余克服,谭烨辉.珊瑚礁区碳循环研究进展[J].生态学报, 2009, 29(11): 6 207-6 215.]
[35] Yan H, Yu K, Shi Q, et al.Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea[J]. Journal of Geophysical Research: Oceans,2016, 121(1): 998-1 008.
[36] Yu Kefu, Yan Hongqiang, Tao Shicheng,et al.A study on the carbon cycle in the coral reef area of the South China Sea[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[36] [余克服,严宏强,陶士臣,等.南海珊瑚礁区的碳循环研究[C]//第四届地球系统科学大会摘要.上海,2016.]
[37] Zhai W.Quantifying air-sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise[J]. Journal of Oceanography, 2016, 72:651-659.
[38] Liang Qianyong, Zhao Jing, Xia Zhen, et al.Distribution characteristicsand influential factorsof dissolved methane in the sea water above gas hydrate area at thenorthern slope of South China Sea[C]//Abstract of the 4th Conference on Earth System Science. Shanghai, 2016.
[38] [梁前勇,赵静,夏真,等. 南海北部陆坡天然气水合物区海水甲烷含量分布特征及其影响因素探讨[C]//第四届地球系统科学大会摘要.上海,2016.]
[39] Jiao N, Yang Y, Hong N, et al.Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea[J]. Continental Shelf Research,2005, 25(10): 1 265-1 279.
[40] Jiao N.New techniques reveal new mechanisms—The role of aerobic anoxygenic phototrophs in carbon cycling in the ocean[J]. Journal of Biotechnology, 2008, 136: S10.
[41] Carlson K M, Curran L M, Ratnasari D, et al.Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia[J]. Proceedings of the National Academy of Sciences,2012, 109(19): 7 559-7 564.
[42] Jiao N, Robinson C, Azam F, et al.Mechanisms of microbial carbon sequestration in the ocean-future research directions[J]. Biogeosciences,2014, 11(19): 5 285-5 306.
[43] Jiao N, Legendre L, Robinson C, et al.Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”[J]. Science,2015, 350(6 267): 1 483-1 483.
[44] Dang H, Lovell R.Microbial surface colonization and biofilm development in marine environments[J]. Microbiology and Molecular Biology Reviews, 2016, 80(1): 91-138.
[45] Dang Hongyue.Ecological characteristics and biogeochemical functions of marine particle-and surface-associated microbiota[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[46] Jiao N, Zheng Q.The microbial carbon pump: From genes to ecosystems[J].Applied and Environmental Microbiology,2016,77(21):7 439-7 444.
[47] Liang Yandao.Large-scale distribution and carbon sequestration potential of marine virio-and pico-plankton[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[47] [梁彦稻. 海洋超微型浮游生物的大尺度分布及其固碳潜力研究[C]//第四届地球系统科学大会摘要.上海,2016.]
[48] Zhang Yongyu.The picophytoplankton-bacteria interactions and their impacts on carbon transport in microbial loop[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[48] [张永雨. 海洋浮游植物与异养细菌互作关系及其对碳的微食物环传递的调控作用[C]//第四届地球系统科学大会摘要.上海,2016.]
[49] Yang Yufeng.Carbon sink potential and bioremediation effects of the large-scale cultivation of seaweed Gracilaria lemaneiformis[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[49] [杨宇峰. 大型海藻龙须菜规模栽培的碳汇潜力及其环境修复效应[C]//第四届地球系统科学大会摘要.上海,2016.]
[50] Xie Wei.Localized high abundance of marine group II archaea in a P-limited subtropical estuary: Implication for microbial interaction and niche adaptation[C]//Abstracts of the 4th Conference on Earth System Science. Shanghai, 2016.
[50] [谢伟. 珠江口异养浮游古菌MGII的勃发及机制探究[C]//第四届地球系统科学大会摘要.上海,2016.]
[51] Wang Y, Zhang R, Zheng Q, et al.Bacterioplankton community resilience to ocean acidification: Evidence from microbial network analysis[J]. ICES Journal of Marine Science: Journal du Conseil,2015,doi:10.1093/icesjms/fsv187.
Outlines

/