Orginal Article

Analyzing Fractal Property of Species Abundance Distribution in A Community

  • Qiang Su
Expand
  • 1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049
    2. University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-06-06

  Revised date: 2015-09-10

  Online published: 2015-10-20

Copyright

地球科学进展 编辑部, 2015,

Abstract

The study of Apecies Abundance Distribution (SAD) is the key of understanding what determines species diversity. The theoretical exploration of SAD relates to the maintenance and conservation of biodiversity, and more importantly, it is conducive to clarifying complicated relationship among species and the distribution of matter and energy in a community. The research on SAD began in the 1930s, and there are so many kinds of theoretical models of SAD that can fit actual data, such as geometric-series model, log-series model, log-normal model, broken-stick model and so on. However, despite this, these models are often restrictive in their hypotheses and difficult to fit by natural communities. Especially, there is not always a good fit to the community that only has a few species. Thus, Frontier firstly introduced a family of models termed the Zipf-Mandelbrot model. This model is unrestrictive and easily fit by different natural community. Accordingly, this paper reviewed its origin, hypothesis, construction, problems and ecological signification of parameters to promote the research of SAD and the determination of species diversity.

Cite this article

Qiang Su . Analyzing Fractal Property of Species Abundance Distribution in A Community[J]. Advances in Earth Science, 2015 , 30(10) : 1144 -1150 . DOI: 10.11867/j.issn. 1001-8166. 2015.10.1144.

References

[1] Pennisi E.What determines species diversity[J]. Science, 2005,309:90.
[2] Zhu Biru, Zhang Dayong.A process—Based theoretical framework for community ecology[J]. Biodiversity Science,2011,(4):389-399.
[2] [朱璧如, 张大勇. 基于过程的群落生态学理论框架[J]. 生物多样性,2011,(4):389-399.]
[3] Zhou Shurong, Zhang Dayong.Neutral theory in community ecology[J]. Journal of Plant Ecology, 2006,(5):868-877.
[3] [周淑荣, 张大勇. 群落生态学的中性理论[J]. 植物生态学报,2006,(5):868-877.]
[4] Zhang Quanguo, Zhang Dayong.Biodiversity and ecosystem functioning: Recent advances and trends[J]. Biodiversity Science, 2003, (5):351-363.
[4] [张全国, 张大勇.生物多样性与生态系统功能:最新的进展与动向[J]. 生物多样性, 2003,(5):351-363.]
[5] Xing Dingliang, Hao Zhanqing.The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011,(3):295-302.
[5] [邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性,2011,(3):295-302.]
[6] Niu Kechang, Liu Yining, Shen Zehao, et al.Community assembly: The relative importance of neutral theory and niche theory[J]. Biodiversity Science,2009,17(6):579-593.
[6] [牛克昌, 刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论[J]. 生物多样性,2009,17(6):579-593.]
[7] Ma Keming.Advances of the study on species abundance pattern[J]. Journal of Plant Ecology,2003,(3):412-426.
[7] [马克明. 物种多度格局研究进展[J]. 植物生态学报,2003,(3):412-426.]
[8] Feng Gang, Zhang Jinlong, Pei Nancai, et al. Comparison of phylobetadiversity indices based on community data from Gutianshan forest plot[J]. Chinese Science Bulletin,2011,56(34):2 857-2 864.
[8] [冯刚, 张金龙, 裴男才,等.系统发育β多样性指数的比较:以古田山样地为例[J]. 科学通报,2011,56(34):2 857-2 864.]
[9] Yakimov B N, Gelashvili D B,Solntsev L, et al.Nonconcavity of mass exponents’ spectrum in multifractal analysis of community spatial structure: The problem and possible solutions[J]. Ecological Complexity, 2014,20:11-22, doi: 10.1016/j.ecocom.2014.07.003.
[10] Xiao X, McGlinn D J,White E P. A strong test of the maximum entropy theory of ecology[J].American Naturalist, 2015, 185:E70-E80.
[11] Zhang Chunyu.Explaining diversity patterns of forest community through species interactions[J]. Journal of Beijing Forestry University, 2014,(6):60-65.
[11] [张春雨. 通过种群互作阐释森林群落多样性格局[J]. 北京林业大学学报,2014,(6):60-65.]
[12] Ma Keming, Liu Yuming.Measurement method of biological community diversityⅠmeasuring α diversity (2)[J]. Biodiversity Science,1994,(4):231-239.
[12] [马克平,刘玉明. 生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J]. 生物多样性,1994,(4):231-239.]
[13] Ma Keming.Measurement method of biological community diversityⅠmeasuring α diversity (1)[J].Biodiversity Science,1994,(3):162-168.
[13] [马克平. 生物群落多样性的测度方法Ⅰα多样性的测度方法(上)[J].生物多样性,1994,(3):162-168.]
[14] Chao A, Hsieh T C, Chazdon R L, et al.Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory[J]. Ecology, 2015,96:1 189-1 201.
[15] Loeuille N, Leibold M A.Effects of local negative feedbacks on the evolution of species within metacommunities[J]. Ecology Letters, 2014,17:563-573.
[16] Supp S R, Ernest S K M. Species-level and community-level responses to disturbance: A cross-community analysis[J]. Ecology, 2014,95:1 717-1 723.
[17] Matthews T J, Borges P A V, Whittaker R J, et al. Multimodal species abundance distributions: A deconstruction approach reveals the processes behind the pattern[J]. Oikos, 2014,123:533-544.
[18] Pielou E C.Ecological Diversity[M].New York:John Willey and Sons, 1975.
[19] Frontier S.Applications of fractal theory to ecology[M]∥Develoments in Numerical Ecology. Berlin Heidelberg: Springer, 1987:335-378.
[20] Harte J, Kitzes J.Inferring regional-scale species diversity from small-plot censuses[J]. Plos One, 2015,10(2): e0117527, doi: 10.1371/journal.pone.0117527.
[21] Tokeshi M.Species abundance patterns and community structure[J]. Advances in Ecological Research, 1993,24:111-186.
[22] McGill B J, Etienne R S, Gray J S, et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework[J].Ecology Letters, 2007,10:995-1 015.
[23] May R M.Theoretical Ecology-Principles and Applications (3rd)[M].Oxford: Oxford University Press, 1981.
[24] Mouillot D, Leprêtre A, Marie-Cécile Andrei-Ruiz, et al. The Fractal Model: A new model to describe the species accumulation process and Relative Abundance Distribution (RAD)[J]. Oikos, 2000,90:333-342.
[25] Frontier S.Diversity and structure in aquatic ecosystems[J]. Oceanography and Marine Biology, 1985,23:253-312.
[26] Zipf G K.Human Behavior and the Principle of Least Effort[M].Cambridge: Wesley Press, 1949.
[27] Mandelbrot B B.The Fractal Geometry of Nature[M].New York: Macmillan, 1983.
[28] Mandelbrot B.An informational theory of the statistical structure of language[J]. Communication Theory, 1953,84:486-502.
[29] Seuront L.Fractals and Multifractals in Ecology and Aquatic Science[M].Florida: CRC Press, 2009.
[30] Frontier S.Species diversity as a fractal property of biomass[M]∥Novak M, ed. Fractals in the Natural and Applied Sciences. Amsterdam: North-Holland Publishing, 1994:119-127.
[31] Devries P J, Walla T R.Species diversity and community structure in neotropical fruit-feeding butterflies[J]. Biological Journal of the Linnean Society, 2001,74:1-15.
[32] Kontkanen P.On the delimitation of communities in research on animal biocoenotics[M]∥Cold Spring Harbor Symposia on Quantitative Biology. New York: Cold Spring Harbor Laboratory Press, 1957:373-378.
[33] Zhang Junlong, Xu Kuidong.Progress and prospects in seamount biodiversity[J]. Advances in Earth Science, 2013,(11):1 209-1 216.
[33] [张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展,2013,(11):1 209-1 216.]
[34] Zhao Feng, Xu Kuidong.Advances in the diversity of microbial eukaryotes in deep sea[J]. Advances in Earth Science, 2014,29(5):551-558.
[34] [赵峰, 徐奎栋. 深海真核微生物多样性研究进展[J]. 地球科学进展,2014,29(5):551-558.]
[35] Spiridonov A, Brazauskas A,Radzevicius S.The role of temporal abundance structure and habitat preferences in the survival of conodonts during the mid-early silurian ireviken mass extinction event[J]. Plos One, 2015,10(4),doi: 10.1371/journal.pone.0124146.
[36] Halley J M, Hartley S, Kallimanis A S, et al.Uses and abuses of fractal methodology in ecology[J]. Ecology Leterst, 2004,7:254-271.
[37] Hubbell S P.The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32)[M].Princeton: Princeton University Press, 2001.
Outlines

/