Dissolution and Migration of Au in Hydrothermal :Ore Deposit: A Review
Received date: 2012-03-19
Revised date: 2012-05-25
Online published: 2012-08-10
Au-S and Au-Cl complexes are the two main hydrothermal species that transport gold. The species Au(HS)-2 is dominant in near neutral solution while complexes such as Au(H2S)HS0 with twofold stoichiometry may be important in acidic conditions. In solution with low sulfur and high chloride concentration, AuCl-2 is predominant under elevated temperatures. In contrast, some other neutral compounds like AuCl0,AuS·(H2O)m are suggested to distribute in gaseous fluids with respect to high-temperature circumstances (e.g. volcanic exhalation). The promoted ore fluid’s capacity to retain gold in solution over large transport distances involved could be explained by the mechnism that gold is likely to dispersing and precipitating in soution by colloid grains. Moreover, gold has the potential to comigrate with As and Sb, which combine with Au and S to shape Au-S-As and Au-S-Sb compound complexes, respectively. Future prospects for study on dissolving and migrating of gold are suggested to focus on realizing the truth of gold ore-forming geologically, improving experimental apparatuses, complementing thermodynamics parameters, and investigating kinetics of metaldissolving reactions, as well as subjects about gold transporting by vapour compounds and surface-driven process.
Key words: Hydrothermal gold ores; Dissolving; Migrating; Complex
Liu Hong , Zhu Jiang , Yang Enlin , Hu Qingcheng , Lü Xinbiao , Gao Qi . Dissolution and Migration of Au in Hydrothermal :Ore Deposit: A Review[J]. Advances in Earth Science, 2012 , 27(8) : 847 -856 . DOI: 10.11867/j.issn.1001-8166.2012.08.0847
[1]Yu Jianmin. A Handbook of Synthesis of Precious Metals Compounds and Complexes[M]. Beijing: Chemical Industry Press,2009:2.[余建民. 贵金属化合物及配合物合成手册[M]. 北京: 化学工业出版社出版,2009: 2.]
[2]Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85: 3 533-3 539.
[3]Liu Yingjun, Ma Dongsheng. Geochemistry of Gold[M]. Beijing: Science Press, 1991: 11-28.[刘英俊, 马东升.金的地球化学[M]. 北京: 科学出版社, 1991: 11-28.]
[4]Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37: 379-399.
[5]Shenberge D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53: 269-278.
[6]Hayashi K, Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250-350 ℃[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2 111-2 126.
[7]Pan P, Wood S A. Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions. II. Results at 200 to 350 ℃ and saturated vapor pressure[J]. Mineralium Deposita, 1994, 29: 373-390.
[8]Benning L G, Seward T M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150~400 ℃ and 500~1 500 bar[J].Geochimica et Cosmochimica Acta, 1996, 60: 1 849-1 871.
[9]Baranova N N, Zotov A V. Stability of gold sulfide species (AuHS0(aq) and Au(HS)-2 (aq)) at 300, 350 ℃ and 500 bar: Experimental study[J]. Mineralogical Magazine, 1998, 62: 116-117.
[10]Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulfide complex of gold (AuHS0) at 350 to 450 ℃ and 500 bar[J]. Geochimica et Cosmochimica Acta, 1998, 62: 2 931-2 947.
[11]Loucks R R, Mavrogenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions[J]. Science, 1999, 284: 2 159-2 163.
[12]Fleet M E, Knipe S W. Solubility of native gold in H-O-S fluids at 100-400 ℃ and high H2S content[J]. Journal of Solution Chemistry, 2000, 29: 1 143-1 157.
[13]Dadze T P, Kashirtseva G A, Ryzhenko B N. Gold solubility and species in aqueous sulfide solutions at T=300 ℃[J]. Geochemistry International, 2000, 38: 708-712.
[14]Baranova N, Osadchii E, Gurevich V, et al. Experimental determination of the standard thermodynamic properties of solid phases in the Au-Ag-S system[J]. Geochimica et Cosmochimica Acta, 2002, 66: 50.
[15]Stefnsson A, Seward T M. Gold(I) complexing in aqueous sulphide solutions to 500 ℃ at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4 121-4 143.
[16]Tagirov B R, Salvi S, Schott J, et al. Experimental study of gold hydrosulphide complexing in aqueous solutions at 350-500 ℃, 500 and 1000 bar using mineral buffers[J]. Geochimica et Cosmochimica Acta, 2005, 69: 2 119-2 132.
[17]Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5 406-5 427.
[18]Pan P, Wood S A. Gold-chloride complexes in very acidic aqueous solutions and at temperatures 25-300 ℃: A laser Raman spectroscopic study[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2 365-2 371.
[19]Gammons C H, Williams-Jones A E. The disproportionation of gold(I) chloride complexes at 25 to 200 ℃[J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 971-1 983.
[20]Murphy P J, Stevens G, LaGrange M S. The effects of temperature and pressure on gold-chloride speciation in hydrothermal fluids: A Raman spectroscopic study[J]. Geochimica et Cosmochimica Acta, 2000, 64: 479-494.
[21]Stefánsson A, Seward T M. Stability of chloride gold(I) complexes in aqueous solutions from 300 to 600 ℃ and from 500 to 1800 bar[J]. Geochimica et Cosmochimica Acta, 2003, 67: 4 559-4 576.
[22]Pokrovski G S, Tagirov B R, Schott J, et al. An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids[J].Chemical Geology, 2009, 259: 17-29.
[23]Tossell J A. The speciation of gold in aqueous solution: A theoretical study[J]. Geochimica et Cosmochimica Acta, 1996, 60: 17-29.
[24]Liu X D, Lu X C, Wang R C, et al. Speciation of gold in hydrosulphide rich ore-forming fluids: Insights from first-principles molecular dynamics simulations[J]. Geochimica et Cosmochimica Acta, 2011, 75: 185-194.
[25]Render P J, Seward T M. The absorption of thiogold(Ⅰ) complexes by amorphous As2S3 and Sb2S3 at 25 and 90 ℃[J]. Geochim et Cosmochim Acta, 1989, 53: 255-267.
[26]Berndt M E, Buttram T, Earley D III, et al. The solubility of gold polysulfide complexes in aqueous sulfide solutions: 100 to 150 ℃ and 100 bar[J]. Geochimica et Cosmochimica Acta, 1994, 58: 587-594.
[27]Pokrovski G S, Dubrovinsky L S. The S-3 ion is stable in geological fluid at elevated temperatures and pressures[J]. Science, 2011, 331: 1 052-1 054.
[28]Seward T M. The hydrothermal chemistry of gold and its implications for ore formation: Boiling and conductive cooling as examples[J]. Economic Geology, 1989, 6: 398-404.
[29]Chen X, Chu W S, Chen D L, et al. Correlation between local structure and molar ratio of Au (III) complexes in aqueous solution: An XAS investigation[J]. Chemical Geology, 2009, 268: 74-80.
[30]Leng Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of researches on the evolution of ore forming fluids and the vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review,2009,55(1): 100-112.[冷成彪, 张兴春, 王守旭, 等. 岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评,2009,55(1): 100-112.]
[31]Zezin D Yu, Migdisov A A, Anthony E, et al. The solubility of gold in H2O-H2S vapour at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 140-5 153.
[32]Zhang Ronghua, Hu Shumin, Zhang Xuetong. Transportation of Au and Cu by vapor and related ore genesis [J].Mineral Deposits, 2006, 25(6): 705-714.[张荣华, 胡书敏, 张雪彤. 金铜在气相中的迁移实验及矿石的成因[J]. 矿床地质, 2006, 25(6): 705-714.]
[33]Zezin D Yu, Migdisov A A, Williams-Jones A E. The solubility of gold in hydrogen sulphide gas: An experimental study[J]. Geochimica et Cosmochimica Acta, 2011, 71: 3 070-3 081.
[34]Herrington R J, Wilkinson J J. Colloidal gold and silica in mesothermal vein systems[J].Geology, 1983, 21: 539-542.
[35]Mikucki E J. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review[J]. Ore Geology Reviews, 1998, 13: 307-321.
[36]Kang Ruhua. Analysis of exploration prespectives of gold-antimony deposits in Baimashan-Longshan EW-striking structural zone, Hunan province[J].Geology and Mineral Resources of South China, 2002, 1: 57-61.[康如华. 湖南白马山—龙山东西向构造带金锑矿找矿前景分析[J]. 华南地质与矿产, 2002, 1: 57-61.]
[37]Pokrovski G S, Zakirov I V, Roux J, et al. Experimental study of arsenic speciation in vapor phase to 500 °C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 453-3 480.
[38]Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 3: 374-385.[聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 3: 374-385.]
[39]Zheng Shigan. Geolgical characteristics of longshan gold antimony deposit and resource forecast[J]. Geology and Mineral Resources of South China, 2006, 4: 14-18.[郑时干. 龙山金锑矿地质特征及深部找矿预测[J]. 华南地质与矿产, 2006, 4: 14-18.]
[40]Neiva A M R, Andras P, Ramos J M F. Antimony quartz and antimony-gold quartz veins from northern Portugal[J]. Ore Geology Reviews, 2008, 34: 533-546.
[41]Yin Huafeng, Liu Guangzhao, Liu Yufeng. Metallogenic regularities and ore Genesis of tungsten gold-antimony ore belt in Xuefengshan[J]. West-China Exploration Engineering, 2009, 21: 115-118.[尹华锋, 刘光昭, 刘玉峰. 雪峰山钨金锑矿带成矿规律和矿床成因[J]. 西部探矿工程, 2009, 21: 115-118.]
[42]Yang Z S, Hou Z Q, Meng X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogeny[J]. Ore Geology Reviews, 2009, 36: 194-212.
[43]Zhang Gangyang, Zheng Youye, Zhang Jianfang, et al. Ore-control structural and geochronologic constrain in Shalagang antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica,2011, 7: 2 143-2 149. [张刚阳, 郑有业, 张建芳,等. 西藏沙拉岗锑矿控矿构造及成矿时代约束[J]. 岩石学报, 2011, 7: 2 143-2 149.]
[44]Obolensky A A, Gushchina L V, Borisenko A S, et al. Computer thermodynamic modeling of the transport and deposition of Sb and Au during the formation of Au-Sb deposits[J]. Russian Geology and Geophysics, 2009, 50: 950-965.
[45]An F, Zhu Y F. Native antimony in the Baogutu gold deposit (west Junggar, NW China): Its occurrence and origin[J]. Ore Geology Reviews, 2010, 37: 214-223.
[46]Pokrovski G S, Kara S, Roux J. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2 361-2 378.
[47]Helz G R, Tossell J A. Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4 457-4 468.
[48]Spycher N F, Reed M H. As(III) and Sb(III) sulfide complexes: An evaluation of stoichiometry and stability from existing experimental data[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2 185-2 194.
[49]Mosselmans J F W, Helz G R, Pattrick R A D, et al. A study of speciation of Sb in bisulfide solutions by X-ray absorption spectroscope[J]. Applied Geochemistry, 2000, 15: 879-889.
[50]Shikina N D, Zotov A V. Solubility of stibnite (Sb2S3) in water and hydrogen sulfide solutions at temperature of 200-300 ℃ under vapor-saturated conditions and a pressure of 500 bar[J]. Geochemistry International, 1999, 37: 82-86.
[51]Zotov A V, Shikina N D, Akinfiev N N. Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3 at hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1 821-1 836.
[52]Krupp R E. Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constant from 25 ℃ to 350 ℃[J]. Geochimica et Cosmochimica Acta,1988, 52: 3 005-3 015.
[53]Tossell J A. The speciation of Sb in sulfidic solutions: A theoretical study[J]. Geochimica et Cosmochimica Acta,1994, 58: 5 093-5 104.
[54]Wood S A. Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions. I. Speciation of Sb in alkaline sulfide solutions at 258 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53: 237-244.
[55]Sherman D M, Ragnarsdottir K V, Oelkers E H. Antimony transport in hydrothermal solutions: An EXAFS study of antimony(V) complexation in alkaline sulfide and sulfide-chloride brines at temperatures from 25 °C to 300 °C at Psat[J]. Chemical Geology, 2000, 167: 161-167.
[56]Tossell J A. Calculation of the energies for oxidation of Sb(III) sulfides by elemental S and polysulfides in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2003, 67: 3 347-3 354.
[57]Pokrovski G S, Borisova A Yu, Roux J, et al. Antimony speciation in saline hydrothermal fluids: A combined X-ray absorption fine structure and solubility study[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4 196-4 214.
[58]Williams-Jones A E, Norman C. Controls of mineral parageneses in the system Fe-Sb-S-O[J]. Economic Geology, 1997, 92: 308-324.
[59]Smith R L J, Fang Z. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems[J]. Journal of Supercritical Fluids, 2009, 47: 431-446.
[60]Bassett W A, Anderson A J, Mayanovic R A, et al. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions[J]. Chemical Geology, 2000, 167: 3-10.
/
〈 |
|
〉 |