Anaerobic Oxidation of Methane (AOM) and Its Influence on Inorganic Sulfur Cycle in Marine Sediments
Received date: 2012-12-14
Revised date: 2013-05-20
Online published: 2013-07-10
The process of AOM plays a significant role in regulating the global balance of methane budget and reducing the greenhouse effect driven by methane emission into atmosphere. Therefore, AOM occurring in marine sediments has become a hot research topic of biogeochemistry in recent years. Generally,sulfate reduction occurs mainly through two pathways, e.g., oxidation organic matter and AOM. Currently, a lot of literatures documented the sulfate reduction driven by the organic matter, however, sulfur cycle driven by AOM was seriously underestimated. Here, based on the views of biogeochemistry and isotope geochemistry, we review the biogeochemistry evidence of AOM process occurring and the controlling factors of sulfate reduction through the AOM pathway. The process of AOM can produce H2S and it further react with reactive iron, forming the iron sulfur minerals. Comparing to the surface sediments, the iron sulfur minerals formation due to AOM are not easy oxidation and therefore buried favorably in the marine sediments. Thus, the roles of sulfate reduction and authigenic iron sulfide minerals formation driven by AOM should not be neglected. We hope this review paper will be helpful to better understand the AOM process and sulfur cycle in marine sediments.
Wu Zijun , Ren Dezhang , Zhou Huaiyang . Anaerobic Oxidation of Methane (AOM) and Its Influence on Inorganic Sulfur Cycle in Marine Sediments[J]. Advances in Earth Science, 2013 , 28(7) : 765 -773 . DOI: 10.11867/j.issn.1001-8166.2013.07.0765
[1] Vairavamurthy M A, Orr W L, Manowitz B. Geochemical transformations of sedimentary sulfur: An introduction[C]∥ACS Symposium Series. Washington DC: American Chemical Society, 1995, 612: 1-15.
[2] Froelich P N, Klinkhammer G P, Bender M L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979, 43(7): 1 075-1 090.
[3] Berner R A. Early Diagenesis: A Theoretical Approach[M]. New Jersey: Princeton University Press, 1980.
[4] JØrgensen B B. Mineralization of organic matter in the sea bed—The role of sulphate reduction[J].Nature, 1982, 296:643-645.
[5] Martens C S, Albert D B, Alperin M J. Biogeochemical processes controlling methane in gassy coastal sediments—Part 1. A model coupling organic matter flux to gas production, oxidation and transport[J].Continental Shelf Research, 1998, 18(14/15): 1 741-1 770.
[6] Berner R A, Petsch S T, Lake J A,et al. Isotope fractionation and atmospheric oxygen, implications for Phanerozoic O2 evolution[J].Science, 2000, 287(5 458): 1 630-1 633.
[7] Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time[J].Amorican Journal of Science,1989, 289:333-361.
[8] Rowe N P, Jones T P. Devonian charcoal[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 331-338.
[9] Watson A J. Consequences for the Biosphere of Forest and Grassland Fires[D].Reading: University of Reading, 1978.
[10] Borowski W S, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996, 24(7): 655-658.
[11] Yang T, Jiang S, Ge L,et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J].Chinese Science Bulletin, 2010, 55(8): 752-760.
[12] Iversen N, JØrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J].Limnology and Oceanography, 1985, 30(5): 944-955.
[13] JØrgensen B B, Parkes R J. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark)[J].Limnology and Oceanography, 2010, 55(3): 1 338-1 352.
[14] Burns S J. Carbon Isotopic evidence for coupled sulfate reduction-methane oxidation in Amazon Fan Sediments[J].Geochimica et Cosmochimica Acta, 1998, 62(5): 797-804.
[15] Wu Zijun,Zhou Huaiyang,Peng Xiaotong,et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China[J].Chinese Science Bulletin,2006, 51(17): 2 006-2 015.[吴自军,周怀阳,彭晓彤,等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J]. 科学通报, 2006, 51(17): 2 052-2 059.]
[16] Chen Y, Ussler III W, Haflidason H,et al. Sources of methane inferred from pore-waterδ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway[J].Chemical Geology, 2010, 275(3/4): 127-138.
[17] Burdige D J, Komada T. Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments[J].Limnology and Oceanography, 2011, 56(5): 1 781.
[18] Snyder G T, Hiruta A, Matsumoto R,et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea[J].Deep-Sea Research Part II, 2007, 54(11): 1 216-1 239.
[19] Pancost R D, Damst E J S S, De Lint S,et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J].Applied and Environmental Microbiology, 2000, 66(3): 1 126-1 132.
[20] Hinrichs K U, Hayes J M, Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J].Nature, 1999, 398(6 730): 802-805.
[21] Guan Hongxiang, Chen Duofu, Song Zhiguang. Biomarkers and bacterial process in the sediments of gas seep site[J].Marine Geology & Quaternary Geology,2007, (5): 75-83.[管红香,陈多福,宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物[J]. 海洋地质与第四纪地质, 2007, (5): 75-83.]
[22] Boetius A, Ravenschlag K, Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407(6 804): 623-626.
[23] Hoehler T M, Alperin M J, Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium[J].Global Biogeochemical Cycles, 1994, 8(4): 451-463.
[24] Kotelnikova S. Microbial production and oxidation of methane in deep subsurface[J].Earth-Science Reviews, 2002, 58(3/4): 367-395.
[25] Anderson B, Bartlett K, Frolking S,et al. Methane and Nitrous Oxide Emissions from Natural Sources[R]. Washington: United States Environmental Protection Agency, Office of Atmospheric Programs, 2010.
[26] Ming Hang, Chen Zhongyun, Chen Meici. Effect of environmental factors on methane-oxidizing activity in paddy soil[J].Acta Peologica Sinica, 2002,39(5):686-692.[闵航,陈中云,陈美慈. 水稻田土壤甲烷氧化活性及其环境影响因子的研究[J]. 土壤学报, 2002, 39(5): 686-692.]
[27] Reeburgh W S. “Soft Spot” in the Global Methane Budget[M]. Dordrecht: Kluwer Academic Publishers, 1996.
[28] Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf[J].Geochimica et Cosmochimica Acta, 1995, 59(18): 3 707-3 715.
[29] Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process[J].Annual Review of Microbiology, 2009, 63:311-334.
[30] Reeburgh W S, Alperin M J. Studies on anaerobic methane oxidation[J].Scope/Unep,1988, 66:367-375.
[31] Yin Xijie.Sulfur Cycle and Methane Biogeochemistry in the Sediments of Pearl Estuary[D].Beijing: University of Chinese Academy of Sciences,2008.[尹希杰. 珠江口沉积物中硫循环和海洋甲烷分布的生物地球化学研究[D].北京:中国科学院大学, 2008.]
[32] JØrgensen B, Kasten S. Sulfur Cycling and Methane Oxidation[M]∥Schulz H D , Zabel M, eds.Marine Geochemistry.Germany: Springer Berlin Heidelberg, 2006: 271-302.
[33] Dale A W, Regnier P, Knab N J,et al. Anaerobic Oxidation of Methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling[J].Geochimica et Cosmochimica Acta, 2008, 72(12): 2 880-2 894.
[34] Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J].Earth and Planetary Science Letters, 1976, 28(3): 337-344.
[35] Niewöhner C, Hensen C, Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the Upwelling Area off Namibia[J].Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464.
[36] Devol A H, Anderson J J, Kuivila K,et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J].Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1 004.
[37] Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skay Bay sediments[J].Earth and Planetary Science Letters, 1980,(47): 655-658.
[38] Borowski W S, Hoehler T M, Alperin M J,et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C]∥Paull C K, Matsumoto R, Wallace P J,et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results. Texa:Ocean Drilling Program, 2000,164:86-99.
[39] Treude T, Krüger M, Boetius A,et al. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic)[J].Limnology and Oceanography, 2005,50(6): 1 771-1 786.
[40] Knab N J, Cragg B A, Borowski C,et al. Anaerobic Oxidation of Methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses[J].Geochimica et Cosmochimica Acta, 2008, 72(12): 2 868-2 879.
[41] Orphan V J, House C H, Hinrichs K U,et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science, 2001, 293(5 529): 484-487.
[42] Alain K, Holler T, Musat F,et al. Microbiological investigation of methane-and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania[J].Environmental Microbiology, 2005, 8(4): 574-590.
[43] Joye S B, Boetius A, Orcutt B N,et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J].Chemical Geology, 2004, 205(3/4): 219-238.
[44] Michaelis W, Seifert R, Nauhaus K,et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J].Science, 2002, 297(5 583): 1 013-1 015.
[45] Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates[J].Marine Geology, 1999, 159(1/4): 131-154.
[46] Treude T, Niggemann J, Kallmeyer J,et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J].Geochimica et Cosmochimica Acta, 2005, 69(11): 2 767-2 779.
[47] Regnier P, Dale A W, Arndt S,et al. Quantitative analysis of Anaerobic Oxidation of Methane (AOM) in marine sediments: A modeling perspective[J].Earth-Science Reviews, 2011, 106(1): 105-130.
[48] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review[J].Antonie van Leeuwenhoek, 2002, 81(1): 271-282.
[49] Holmkvist L, Ferdelman T G, Jorgensen B B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)[J].Geochimica et Cosmochimica Acta, 2011, 75(12): 3 581-3 599.
[50] Canfield D E. Reactive iron in marine sediments[J].Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632.
[51] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J].American Journal of Science, 1985, 285(8): 710-724.
[52] Poulton S W, Krom M D, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide[J].Geochimica et Cosmochimica Acta,2004, 68(18): 3 703-3 715.
[53] Holmkvist L, Ferdelman T G, Jorgensen B B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)[J].Geochimica et Cosmochimica Acta,2011, 75(12): 3 581-3 599.
[54] Canfield D E, Raiswell R, Bottrell S H. The reactivity of sedimentary iron minerals toward sulfide[J].American Journal of Science, 1992, 292(9): 659-683.
[55] Fossing H, JØrgensen B B. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark[J].Geochimica et Cosmochimica Acta, 1990, 54(10): 2 731-2 742.
[56] Wehrmann L M, Templer S P, Brunner B,et al. The imprint of methane seepage on the geochemical record and early diagenetic processes in cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz[J].Marine Geology, 2011, 282(1/2): 118-137.
[57] Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry: Past and Present[M]. Colorado: Geological Society of America, 2004.
[58] Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 ℃: The rate equation[J].Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.
[59] Wijsman J W M, Middelburg J J, Herman P M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J].Marine Chemistry, 2001, 74(4): 261-278.
[60] Hensen C, Zabel M, Pfeifer K,et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J].Geochimica et Cosmochimica Acta, 2003, 67(14): 2 631-2 647.
[61] Lim Y C, Lin S, Yang T F,et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J].Marine and Petroleum Geology, 2011, 28(10): 1 829-1 837.
[62] JØrgensen B B, Böttcher M E, Lüschen H,et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J].Geochimica et Cosmochimica Acta, 2004, 68(9): 2 095-2 118.
[63] Böttcher M E, Smock A M, Cypionka H. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature[J].Chemical Geology, 1998, 146(3/4): 127-134.
[64] Neretin L N, Böttcher M E, JØrgensen B B,et al. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J].Geochimica et Cosmochimica Acta, 2004, 68(9): 2 081-2 093.
[65] Riedinger N, Pfeifer K, Kasten S,et al. Diagenetic alteration of magnetic signals by Anaerobic Oxidation of Methane related to a change in sedimentation rate[J].Geochimica et Cosmochimica Acta, 2005, 69(16): 4 117-4 126.
/
〈 |
|
〉 |