GEOLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF CARBONATITES AND THEIR IMPLICATION FOR TECTONIC SETTINGS
Received date: 1997-12-19
Revised date: 1998-05-29
Online published: 1998-10-01
This contribution reviews on the chemical compositions of the mantle sources of carbonatites, mantle metasomatism, mechanisms of partical melting in asthemospheric mantle and the evolution models for carbonatite magmas based on the occurrences, petrologic characteristics and Nd-Sr-Pb isotope and trace element data of the known carbonatites in the world and experiment petrologic data. Carbonatite could not only be produced in extentional tectonic setting in lithosphere, such as continental rift, but also be formed in locally derivative spreading setting on a compressive tectonic background. The former is characterized by association with peralkaline rocks forming ring complexes and mainly is derived from the asthenospheric mantle as a nephelinitic ultrabasicbasic magmas and then through liquid immicibility, but the later is characterized by its occurrence as a single lens and banded carbonatitic intrusion and/or extrusion along extentional lithospheric fractures resulted from continental collsion and in such case carbonatite could directly be produced by very small partial melting of the lithospheric mantle.
There are three cabonatite origin processes that probably happen above a mantle plume or different parts of a mantle plume, which are not mutually exclusive.①Partial melting of CO2 saturated asthenoshere mantle atca. 100 km depth to produce Na-Mg-rich carbonatite magma,no associated silicate rocks.②Fractional crystallization of carbonate-bearing undersaturated silicate magmas(nephelinitic/melilititic) produced by partial melting of sthenospheric mantle at intersection of the geotherm with a volatile-poor solidus. ③Liquid immiscibility of a carbonaterich silicate magma(nephelinitc/ melilititic) produced by partial melting of asthenosheric mantle at intersection of the geothern with a volatile-richer solidus.
Yang Xueming,Yang Xiaoyong,M. J. Le Bas . GEOLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF CARBONATITES AND THEIR IMPLICATION FOR TECTONIC SETTINGS[J]. Advances in Earth Science, 1998 , 13(5) : 457 -466 . DOI: 10.11867/j.issn.1001-8166.1998.05.0457
[1] Le Bas Mj. Carbonatite-Nepheiinite Volcanism. London: Sons & Wiley, 1977.
[2] Bell K, Keller J, ed. Carbonatite Volcanism: Oldoinyo Lengai and Petrogenesis of Natrocarbonatites genesis.Berlin: Springer-Verlag, 1995.
[3] Bailey D K. Carbonatite magmas. J Geol Soc London, 1993, 150: 637-651.
[4] Dobson D P, Jones A P. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett, 1996, 143: 207-215.
[5] Triman A H, Schedl A. Properties of carbonatite magma and processes in carbonatite magma chambers. J Petrol, 1983, 91:437-447.
[6] Sweeney R. Carbonatite melt compositions in the earth ps mantle. Earth Planet Sci Lett, 1994, 128: 259-290.
[7] Wooly A R, Kempe D R C. Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell Ked. Carbonatites: Genesis and Evolution. London: Unwin Hyman, 1989. 1-14.
[8] Wooly A R. The spatial and tem poral distribution of carbonatites.In: BellK, ed. Carbonatites: Genesis and Evolution. London: Unwin Hyman, 1989.15-37
[9] Le Bas M J . Carbonat it e m agmas. M ineral M abg, 1981, 44: 133- 140.
[10] Le Bas M J. Diversification of carbonatites. In: Bell K, ed. Carbonatites. London: Unwin Hyman, 1989. 427-447.
[11] Mian I, Le Bas M J. The biotite-phlogopite series in sodic fenites from the Loe Shilman Carbonatite complex, NW Parkistan.Mineral Mag, 1987,51:397-408.
[12] Mian I, Le Bas M J. Sodic amphiboles in fenites from the Loe Shilman carbonatite complex, NW Pakistan. Mineral Mag, 1986, 50:187-197.
[13] Le Bas M J. Oceanic carbonatite. In: Kornprobst J, ed. Kimberlite 1: Kimberlite and Related Rocks. Amsterdam: Elsevier, 1984. 169-178.
[14] Church A A, Jones A P. Silicate-carbonatite immiscibility at Oldoinyo Lengai. J Petrol, 1995, 36: 869-889.
[15] Bell K, Simonetti A. Carbonatite magmatism and plume activity: implications from Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol, 1996, 37: 1 321-1 339.
[16] Dawson J B, Pinkerton H June 1993 eruption of Oldoinyo Lengai, Tanizania: exceptionally viscous and large carbonatite lava flows and evidence for coexisting sillicate and carbonatite magmas. Geology, 1994, 22: 709-802.
[17] Green D H, Wallace M E. Mantle metasonmatism by ephemeral carbonatite melts. Natrue, 1988, 336: 459-462.
[18] Wallace M E, Green D H.An experimental determination of primary carbonatite composition.Nature, 1988, 335: 343-346.
[19] Wyllie P J, Huang W-L. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol, 1976, 54: 79-107.
[20] Yaxley G M, Green D H. Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere. Contrib Mineral Petrol, 1996, 124: 359-369.
[21] Pearce N J G, Leng M J. The orgian of carbonatites and related rocks from the Igaliko Dyaliko Dyke Swarm, Gardar Province, South Greenland: field, geochemical and C-O-Sr-Nd iostope evidence. Lithos, 1996, 39: 21-40.
[22] Nelson D R, Chivas A R, Chapell B W, et al. Geochemical and isotopic systematics and implications for the evoltuion of oceaisland sources. Geochim Cosmochim Acta, 1988, 52: 1-17.
[23] Phipotts J, Tatsumotoo M, Li X, et al. Some Nd and Sr isotopic systematics for the REE-enriched deposit at Bayan Obo,China. Chem Geol, 1991, 90: 177-188.
[24] Roden M F, Murthy R V, Gaspar J C. Sr and Nd isotopic composition of the Jacupiranga carbonatite. J Geol, 1985, 93: 212-220.
[25] Allegre C J. Isotope geodynamics. Earth Planet Sci Lett, 1987, 86:175-203.
[26] Hart S R. A large-Scale isotope anomaly in the Southern hemisphere mantle. Nature, 1984, 309: 753-757.
[27] Saunders A D, Norry M J, Tarney J. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J Petrol, 1988, Special Lithosphere issue: 425-445.
[28] Chaffery D J, Cliff R A, Wilson B M. Characterization of the St Helena magma source. In: Saunders A D, Norry M J, eds. Magmatism in Ocean Basins. Spec Publ Geol Soc, 1989, (42): 257-276.
[29] Gerlach D C, Cliff R A, Davies G R, et al. Magma Sources of the Cape Verdesarchipelago: isotopic and trace element contraints. Geochim Cosmochim Acta, 1988, 52: 2 979-2 992.
[30] Piccirillo E M, Civetta L. Regional variations within the Parana flood basalts(southern Brazil): evidence for subcontinental mantle heterogeneity and cruustal contamination. Chem Geol, 1989, 75: 103-122.
[31] Cliff R A. Isotopic dating in metamorphic belts. J Geol Soc Lond, 1985, 142: 97-110.
[32] Storey M, Saunders A D, Tarney J, et al. Geochemical evidence for plume-mantle interactions beneath Kergulen and Herd Islands, Indian Ocean. Nature, 1988, 336: 371-374.
[33] Stille P, Unruh D M, Tatsumoto M. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawwii basalts. Nature, 1983, 304: 25-29.
[34] Fittion J G, James D, Kempton P D, et al. The role of the lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. J Petrol, 1988, Special Lithosphere issue: 331- 349.
[35] Menzies M A, Halliday A. Lithospheric domains beneath the Archaean and Proterozoic crust of Scotland. J Petrol, 1988,Special Lithosphere issue: 275-302.
[36] Song Y, Frey F A. Geochemistry of peridotite xenoliths in basalts from Hannuoba, eastern China: implications for sub-continental mantle heterogeneity. Geochim Cosmochim Acta, 1989, 53: 97-114.
[37] Downes H, Dupuy C. Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif central, France. Earth Planet Sci Lett, 1987, 82: 121-135.
[38] Vance D, Stone J O H, O'Nions R K. He, Sr and Nd isotopes in xenoliths from Hawaii and other oceanic islands. Earth Plantet Sci Lett, 1989, 86:147-160.
[39] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett, 1991, 104:3810.
[40] McCulloch M T, Japues A, Nelson D R, et al. Nd and Sr isotopes in kimberlites and lamproites from western Australia: an enriched mantle origin. Nature, 1983, 302: 400- 403
[41] Kramers J D, Smith C B, Lock N P, et al. Can Kimberlites be generated from ordinary mantle? Nature, 1981, 291: 53-56.
[42] Zinler A, Hart S R. Chemical geodynamics. Ann Rev Earth Planet Sci, 1986, 14: 493-571.
[43] Deines P. Stable isotope variations in carbonatites. In: Bell K, ed. Carbonatites: Genesis and Evolution London: Unw in Hyman, 1989, 301-359.
[44] Le Bas M J, Spiro B, Yang Xueming. Oxygen, carbon and strontium isotope study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, N China. Mineral M ag, 1997, 61: 531-541.
[45] Kalt A, Hegner E, Satir M. Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle sources of East African Rift carbonatites. Tectonophysics, 1997, 278: 31-45.
[46] Le Bas M J, Yang Xueming, Zhang Peishan, et al. Geochemical characteristics of the Bayan Obo REE-Nb-Fe carbonatitic complex, Inner Mongolia, N. China. Abstract of 30th IGC, 1996, 2: 390. Beijing, 4-14 August, 1996.
[47] Veizer J. Trace elements and isotopes in sedimentary carbonates. Mineral Rev, 1983, 11: 265-199.
/
〈 |
|
〉 |