RESEARCH PROGRESSES IN SOIL INFORMATION SYSTEM FOR GLOBAL CHANGE STUDIES
Received date: 1997-12-12
Revised date: 1998-03-30
Online published: 1998-10-01
GIS-based soil information system(SIS) is very important for assessment of the capacity of land production, the status, rates of soil degradation and global change studies. In this paper, the research progresses in SIS development in recent years are introduced, including FAO Soil Map of World(SMW) and its revised legends, World Soil Database(SDB), World Soil and Terrain Digital Database(SOTER), World Inventory of Soils Emission potentials(WISE) and the progresses in USA and China; then two methods such as terrain analysis and geostatistics that used widely to diagnose soil spatial variability in soil mapping are presented. From the trend of SIS, it is necessary to integrate spatial analysis with GIS.
Key words: Soil Information System; SOTER; WISE; Terrain analysis; Geostatistics.
Zhu Songli,Chen Yufeng . RESEARCH PROGRESSES IN SOIL INFORMATION SYSTEM FOR GLOBAL CHANGE STUDIES[J]. Advances in Earth Science, 1998 , 13(5) : 488 -494 . DOI: 10.11867/j.issn.1001-8166.1998.05.0488
[1] 周慧珍. 土壤地理信息系统. 土壤, 1993, 21(6) : 32-36.
[2] FAO. Soil Map of the World(1∶5 M ). UNESCO, Paris. 1971-1981, Vol 110.
[3] Prentice C, Cramer W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and Climate. Journal of Biogeography, 1992, 19: 117-134.
[4] FAO. FAO-UNESCO Soil Map of the World Revised Legend. World Soil Resources Reports. 1988, Vol 60.
[5] FAO/ ISRIC. FAO-ISRIC Soil Database(SDB). World Soil Resources Reports. 1989, Vol 64.
[6] FAO/ISRIC/CSIC. Multilingual Soil Database. World Soil Resources Reports. 1995, Vol 81.
[7] FAO. World Soil Resources: An explanatory note on the FAO world soil resources map at 1∶25 000 000 scale. World Soil Resources Reports.1991, Vol 66.
[8] 周慧珍. 简介1∶100万世界土壤与土地数字化数据库. 土壤通报,1991,22(3):102-103.
[9] Oldeman L R, VanEngelen V W P. A world soils and terrain digital database (SOTER): an improved assessment to land resources. Geoderma, 1993, 60: 309-325.
[10] FAO. Global and national soil and terrain digital databases (SOTER). World Soil Resources Reports. 1995, Vol 74, Rev.
[11] 龚子同. 面向 21 世纪的土壤地理学. 土壤学进展, 1995, 23(1): 18.
[12] Batjes N H, Bridges E M. Potential emission of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE). Journal of Geophysical Research, 1994, 99D (8):16 479- 16 489.
[13] Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soils Science, 1996, 47: 151-163.
[14] White J G. Soil Zinc Map of USA using Geostatistics and Geographic Information System. Soil Sci Soc Am J, 1997, 61:185-194.
[15] Ernstrom D J. Enhanced soils information system from advances in computer technology. Geoderma, 1993, 60: 327-441.
[16] 全国土壤普查办公室. 中国土种志(第一卷). 北京: 中国农业出版社, 1993.
[17] 孙成权, 施永辉. 中国全球变化研究能力评价. 地球科学进展,1997,12(6):564-573.
[18] 贺红土, 侯彦林. 区域微机土壤信息系统的建立和应用. 土壤学报, 1991, 28(4): 345-354.
[19] 国家自然科学基金编. 土壤学. 北京: 科学出版社, 1997.
[20] 孙波, 张桃林, 赵其国. 我国东南丘陵山区土壤肥力的综合评价. 土壤学报, 1995, 32(4): 362- 269.
[21] 王效举, 龚子同, 张西森. 红壤丘陵小区域水平不同时段土壤质量变化的评价和分析. 地理研究, 1997, 17(2): 141-149.
[22] Moore I D. Soil Attribute Prediction Using Terrain Analysis. Soil Sci Soc Am J, 1993, 57: 443-452.
[23] Bourennane H. Improving the kriging of soil variable using slope gradient as external drift. European Journal of Soil Science, 1996, 47: 473-483.
[24] Gessier P E. Soil-landscape modeling and spatial prediction of soil attributes. Int J Geographical Information System,1995, 9(4) : 421-432.
[25] Odeh I O A. Further result on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 1995, 67: 215-226.
[26] 王学军. 空间分析技术与地理信息系统的结合. 地理研究, 1997, 16(3): 70- 73.
[27] 侯景儒, 郭光裕著. 矿产统计预测及地质统计学的理论与应用. 北京: 冶金出版社, 1993.
[28] Voltz P. Predicting soil properties over a region using sample information from a mapped reference area. European Journal of Soil Science, 1997, 48: 19-30.
[29] Crawford C A.Incorporating Spatial Trends and Anisotropy in Geostatistical Mapping of Soil Properties. Soil Sci Soc Am J, 1997, 61:298-309.
[30] Smith J. Using Multiple-Variable Indicator kriging for Evaluating Soil Quality. Soil Sci Soc Am J, 1993, 57: 743- 749.
[31] Goovaerts P. Integrating soil map information in modeling the spatial variation of continuous soil properties. European Journal of Soil Science. 1995, 46: 397-414.
[32] Yates S R, Warrick A W. Estimation soil water content using Cokriging. Soil Sci Soc Am J, 1991, 51(1): 23-29.
[33] Mahmoudjafari M, Kluitenberg G J, Havlin J L, et al. Spatial variability of nitrogen mineralization at the field scale. Soil Sci Soc Am J, 1997, 61(4): 1 214-1 221.
[34] Trangmar B B, Yost R S, Wade M K, et al. Spatial variation of soil properties and rice yield on recently clear land. Soil Sci Soc Am J, 1987, 51(3): 668- 674.
[35] Ding Y M, Fotheringham A S. The integration of spatial analysis and GIS. Computer, Environment and Urban System, 1992, 16:3-19.
[36] Eger H.波恩第九次ISCO会议主题: 行动起来实现土地的可持续利用. 人类环境学杂志(AMBIO中文版), 1996,25(8):480-483.
/
〈 |
|
〉 |