Agricultural Activities and Carbon Cycling in Karst Areas in Southwest China:Dissolving Carbonate Rocks and CO2 Sink
Received date: 2011-09-05
Revised date: 2012-02-18
Online published: 2012-04-10
HOBO automatic weather station,WGZ-1 photoelectric digital water table gauge and CTDP300 on-line water quality analyzer were set up to monitor rainfall, hydrochemistry and water stage at an agriculture dominated karst catchment, which is Qingmuguan underground river systemin Chongqing China. The groundwater were sampled and analyzed monthly for hydrochemistry, Dissolved Inorganic Carbon(DIC) concentration and stable carbon isotopes (δ13C-DIC) in 2010. Hydrochemistry and stable carbon isotopes can verify that sulphuric acid and nitric acid take part in dissolving carbonate rocks, and the concentrations of dissolved inorganic carbon in underground river are due to the weathering of carbonate minerals by carbonic acid, sulphuric acid and nitric acid. The contribution rate that carbonic acid dissolving carbonate rocks making DIC largely varies from seasons, showing 62.98% in wet season and 74.86% in dry season,between 55.53% and 81.25%. In Qing Muguan catchment, the flux of DIC due to carbonic acid dissolving carbonate rocks is 14.67×106 mol/a, accumulating carbon sink of 7.335×106 mol/a, the flux of DIC due to carbonate rocks weathering by sulphuric acid and nitric acid is 7.48×106 mol/a, amounting to a third of total DIC of ground water. Sulphuric acid and nitric acid dissolving carbonate rocks contribute to increasing DIC of 1.89×106 mol/a every square kilometers of cultivated land. This result is obviously less than the values calculated by predecessors. This work shows that sulphuric acid and nitric acid derived from human activities involve in dissolving carbonate rocks and changing carbon cycling.
Zhang Xingbo, Jiang Yongjun,Qiu Shulan, Cao Min,Hu Yijun . Agricultural Activities and Carbon Cycling in Karst Areas in Southwest China:Dissolving Carbonate Rocks and CO2 Sink[J]. Advances in Earth Science, 2012 , 27(4) : 466 -476 . DOI: 10.11867/j.issn.1001-8166.2012.04.0466
[1]Yuan D.The carbon cycle in karst[J].Zeitschrift fur Geomorphologie Neue Folge,1997, 108(Suppl.):91-102.
[2]Liu Zaihua. Two important atmospheric CO2 sinks[J]. China Science Bulletin, 2000, 45(21): 2 348-2 351.[刘再华.大气CO2两个重要的汇[J].科学通报,2001,45(21):2 348-2 351.]
[3]Jiang Z C,Yuan D X. CO2 source-sink in karst processes in karst areas of China[J]. Episodes,1999,22(1): 33-35.
[4]Xu Shengyou,Jiang Zhongcheng. Preliminary estimate the relationship between Karstification and CO2 source & sink[J]. China Science Bulletin, 1997, 42(9):953-956.[徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997, 42(9):953-956.]
[5]Liu Zaihua.Contribution of Carbonate rock weathering to the atmospheric CO2 sink[J]. Carsologica Sinica, 2000,19(4):294-300.[刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献[J].中国岩溶,2000,19(4):294-300.]
[6]Etchanchu D, Probst J L. Evolution of the chemical composition of the Garonne river during the period 1971-1984[J].Hydrological Sciences Journal,1988,33(3):243-256.
[7]Semhi K,Amiotte Suchet P,Clauer N, et al.Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J].Applied Geochemistry,2000, 15(6):865-874.
[8]West T Q,McBride A C. The contribution of agriculture lime to carbon dioxide emissions in the Unite States: Dissolution, transport, and net emissions[J]. Agriculture, Ecosystems and Environment, 2005,108(2):145-154.
[9]Oh N H,Raymond P A. The contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin[J].Global Biogeochemical Cycle,2006,20(3):GB3012,doi:10.1029/2005GB002565.
[10]Ray mond P A,Oh N H,Turner R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J].Nature,2008,451(7 177):449-452.
[11]Perrin A S,Probst A,Probst J L.Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales[J].Geochimica et Cosmochimica Acta,2008,72:3 105-3 123.
[12]Li S L,Liu C Q, Li J,et al.Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:Isotopic and chemical constraints[J].Chemical Geology,2010,77:301-309.
[13]Barnes R T,Raymond P A. The contribution of agriculture and urban activities to inorganic carbon fluxes within temperate watersheds[J]. Chemical Geology, 2009,266(3/4):327-336.
[14]Baker A,Cumberland S,Hudson N.Dissolved and total organic and inorganic carbon in some British rivers[J].Area,2008,40(1):117-127.
[15]Spence J,Telmer K.The role of sulfur in chemical weathering and atmospheric CO2 fluxes:Evidence from major ions, δ13C-DIC, and δ34S-SO4 in rivers of the Canadian Cordillera[J].Geochimica et Cosmochimica Acta,2005,69:5 441-5 485.
[16]Lerman A,Wu L.CO2 and sulfuric acid controls of weathering and river water composition[J].Journal of Geochemical Exploration,2006,88(1/3):427-430.[17]Lerman A,Wu L, Mackerzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean,and their role in the global carbon balance[J].Marine Chemistry,2007,106:326-350.
[18]Li S L, Calmels D, Han G, et al.Sulfuric acid as an agent of carbonate weathering constrained by δ13C-DIC:Examples from Southweat China[J].Earth and Planetray Science Letters,2008,270:189-199.
[19]Liu Congqiang, Jiang Yingkui,Tao Faxiang, et al.Chemicalweathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J].Geochimica, 2008,37(4): 404-414.[刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008,37(4): 404-414.]
[20]Liu Zaihua, Dreybrodt W, Han Jun,et al.Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica, 2005,24(1):1-14.[刘再华,Dreybrodt W,韩军,等. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1-14.]
[21]Liu Zaihua, Chris Groves, Yuan Daoxian,et al. Study on the hydrochemical variations caused by the water-rock-gas interaction—An example from the Guilin Karst experimental site[J]. Hydrogeology & Engineering Geology, 2003,30(4):13-18.[刘再华,Chris Groves,袁道先,等.水—岩—气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例[J].水文地质工程地质,2003,30(4):13-18.]
[22]Liu Zaihua,Li Qiang,Wang Jinliang, et al. Interpretation of borehole storm-scale and vertical hydrochemical variations at the Guilin Karst experimental site[J].Carsologica Sinica, 2004,23(3): 169-176.[刘再华,李强,汪进良,等.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J].中国岩溶,2004,23(3): 169-176.]
[23]Liu Zaihua,Li Qiang,Sun Hailong,et al. Seasonal,diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:Soil CO2 and dilution effects [J].Journal Hydrology,2007,337(1/2):207-223.
[24]Yuan Wenhao,He Qiufang,Yang Pingheng,et al. Hydrochemistry and its influencing factors in typical karst valleys—A case study of Qingmuguan underground water system in Chongqing[J]. Journal of Southwest University (Natural Science Edition), 2009,31(6):160-164.[袁文昊,贺秋芳,杨平恒,等. 典型岩溶槽谷地下河水化学时空变化特征及影响因素初探——以重庆青木关地下河系统为例[J].西南大学学报:自然科学版,2009,31(6):160-164.]
[25]Wang Zhijun,Yang Pingheng,Kuang Yinglun, et al.Temporal and spatial variations of the nitrate-nitrogen sources in an underground river using 15N isotope technique[J]. Environmental Science,2009,30(12):3 548-3 554.[汪智军,杨平恒,旷颖仑,等. 基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析[J].环境科学,2009,30(12):3 548-3 554.]
[26]Laure Gandois,Anne-Sophie Perrin,Anne Probst.Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment[J]. Geochimica et Cosmochimica Acta,2011,75(5):1 185-1 198.
[27]Deines P, Langmuir D,Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1 147-1 164.
[28]Clark I, Fritz P. Environmental Isotopes in Hydrogeology[M]. Lewis Press:Boca Raton,1997.
[29]Deines P. Carbon isotope effects in carbonate systems[J]. Geochimica et Cosmochimica Acta, 2004,68(12): 2 659-2 679.
/
〈 |
|
〉 |