Gold Property in Silicate Melts and Fluids and Its Gold Distribution Behaviors between Melts and Coexisting Fluids

  • Wang Shuilong ,
  • Shang Linbo ,
  • Bi Xianwu ,
  • Fan Wenling
Expand
  • 1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002,China; 2. University of Chinese Academy of Sciences, Beijing 100039, China)

Online published: 2014-06-10

Abstract

Porphyry deposit is a kind of important ore deposit. Phase transition of Magma-Fluid stage in magma evolution controls the element distribution between different phases. Gold distribution between Melts and Coexisting Fluids is a important key to the metallogenic mechanism of porphyry deposits. The distribution of gold between different phases is not only controlled by temperature, pressure, oxygen fugacity, but also influenced by the content of fluids and composition of melts. Finally we reviewed the problems in experiment and future research on the partitioning of Au between melt and coexsiting fluids.

Cite this article

Wang Shuilong , Shang Linbo , Bi Xianwu , Fan Wenling . Gold Property in Silicate Melts and Fluids and Its Gold Distribution Behaviors between Melts and Coexisting Fluids[J]. Advances in Earth Science, 2014 , 29(6) : 683 -690 . DOI: 10.11867/j.issn.1001-8166.2014.06.0683

References

[1] S, Pichavant M. Gold solubility in arc magmas: Experimental determination of the effect of sulfur at 1000 ℃ and 0.4 GPa[J]. Geochimica et Cosmochimica Acta, 2012, 84: 560-592.
[2] D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
[3] R E, Linnen R L, Holtz F. Solubility of Au in Cl-and S-bearing hydrous silicate melts[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2 396-2 411.
[4] D A, Berger V I, Moring B C. Porphyry Copper Deposits of the World: Database, Map, and Grade and Tonnage Models[R]. U.S: Geological Survey Open-File Report,2005.
[5] Xiaoyan, Bi Xianwu, Hu Ruizhong, et al. Advances in Tin distrubition brtween granitic melts and coexisting aqueous fluids and a review of Tin in fluids and melts[J]. Advances in Earth Science, 2007, 22(3):281-289.[胡晓燕, 毕献武, 胡瑞忠,等. 锡在花岗岩熔体和流体中的性质及分配行为研究进展[J]. 地球科学进展, 2007, 22(3):281-289. ]
[6] Dongsheng. The theory of partition coefficient and its geochemistry significance[J]. Geological and geochemical,1980,(3): 10-22.[马东升. 分配系数理论及其地球化学意义[J]. 地质地球化学, 1980,(3): 10-22. ]
[7] W L. Trace element partition coefficients-a review of theory and applications to geology[J]. Geochimica et Cosmochimica Acta, 1963, 27(12): 1 209 -1 264.
[8] R. The Earth’s core: Speculations on its chemical equilibrium with the mantle[J]. Geochimica et Cosmochimica Acta, 1971, 35: 203-221.
[9] K G, Heier K S. The distribution of some elements between the metal and silicate phases obtained in a smelting reduction of dunite from Almklovdalen, West Norway[J]. Earth and Planetary Science Letters, 1972, 16(2): 209-212.
[10] K, Lewis Roy S, Anders E. Distribution of gold and rhenium between nickel-iron and silicate melts: Implications for the abundance of siderophile elements on the Earth and Moon[J]. Geochimica et Cosmochimica Acta, 1974, 38: 683-701.
[11] J H, Drake M J. Geochemical constraints on core formation in the Earth[J]. Nature, 1986, 322: 221-228.
[12] W E, Crocket J H, Fleet M E. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200 ℃[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2 341-2 344.
[13] J H, Fleet M E, Stone W E. Experimental partitioning of osmium, iridium and gold between basalt melt and sulphide liquid at 1300 ℃[J]. Australian Journal of Earth Sciences, 1992, 39: 427- 432.
[14] M E, Chryssoulis S L, Stone W E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: Experiments on the fractional crystallization of sulfide melt[J]. Contributions to Mineralogy and Petrology, 1993, 115: 36-44.
[15] N I, Asif M, Brügmann G E, et al. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1 251-1 260.
[16] M E, Crocket J H, Stone W E. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid aud basalt melt[J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2 397-2 412.
[17] J H, Fleet M E, Stone W E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4 139-4 149.
[18] P J. Magmatic sulfides and Au:Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 850 ℃, 100MPa in a haplogranitic melt pyrrhotite intermediate solid solution gold metal assemblage, at gas saturation[J]. Lithos, 1999, 46: 573-589.
[19] M E, Crocket J H, Liu Menghua, et al. Laboratory partitioning of Platinum-Group Elements (PGE) and gold with application to magmatic sulfide-PGE deposits[J]. Lithos, 1999, 47: 127-142.
[20] M R, Candela P A, Piccoli P M, et al. Gold solubility, speciation, and partitioning as a function of HCl in the brine-silicate melt-metallic gold system at 800 ℃ and 100 MPa[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3 719-3 732.
[21] K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 867-880.
[22] J M, McDonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855-872.
[23] J E. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 349-4 360.
[24] A C, Frank M R, Pettke T, et al. Gold partitioning in melt-vapor-brine systems[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 321-3 335.
[25] A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages[J]. Geochimica et Cosmochimica Acta, 2007, 71: 1 764-1 782.
[26] A C, Candela P A, Piccoli P M, et al. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag[J]. American Mineralogist, 2008, 93: 1 437-1 448.
[27] A S, Simon A, Guilong M. Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt-sulfide-oxide-aqueous fluid systems at 800 ℃, 150 MPa and variable sulfur fugacity[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5 778-5 792.
[28] M R, Simon A C, Pettke T, et al. Gold and copper partitioning in magmatic-hydrothermal systems at 800 ℃ and 100 MPa[J]. Geochimica et Cosmochimica Acta, 2011, 75: 2 470-2 482.
[29] Xiaoming, Wang Henian, Rao Bing. Experiments on the partition coefficient of gold between granitic melts and different fluids[J]. Mineral Deposit, 1998,17(Suppl.): 997-1 002.[曲晓明, 王鹤年, 饶冰. 金在花岗质熔体与不同成分流体之间分配系数的实验研究[J]. 矿床地质,1998,17(增刊): 997-1 002.]
[30] Guoliang. The influence factor of element partition coefficient in melt-solution system and its significance to genesis of mineral deposits[J]. Hu’nan Geology, 1988, 7(3):69-84.[干国梁. 熔体—溶液体系中元素分配系数的影响因素及其矿床成因意义[J]. 湖南地质, 1988, 7(3):69-84. ]
[31] Guoliang. The influence factor of element property and melt composition to partition coefficient and and its significance[J]. Hu’nan Geology, 1989, 8(2):70-77.[干国梁.元素性质和熔体成分对分配系数的影响及其意义[J]. 湖南地质, 1989, 8(2):70-77. ]
[32] Zoltn, Candela P A, Piccoli P M, et al. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation[J]. Geochimica et Cosmochimica Acta, 2012, 91: 140-159.
[33] Zoltn, Candela P A, Piccoli P M, et al. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas[J]. Geochimica et Cosmochimica Acta, 2013, 112: 288-304.
[34] Yuan, Audetat Andreas. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation[J].Geochimica et Cosmochimica Acta, 2013, 118: 247-262.
[35] Guangjun. Gold Deposit Geology[M]. Chongqing: Chongqing University Press, 1991.[俞广钧. 金矿床地质学[M]. 重庆: 重庆大学出版社, 1991.]
[36] H L. Geochemistry of Hydrothermal Ore Deposits(Third Edition)[M]. New York: John Wiley and Sons, 1997: 435-469.
[37] Hans P. Minerals in hot water[J]. American Mineralogist, 1986, 71: 655-673.
[38] Zhengguo. Review of experiment research on the formation condition of hydrothermal gold deposits[J]. Geological Science and Technology Information, 1989, 8(4): 75-80.[胡正国. 热液金矿床形成条件的实验研究综述[J]. 地质科技情报, 1989, 8(4): 75-80.]
[39] E H. High-temperature dissolution of gold in water and genesis of gold deposits[J].Gold, 1990, 11(2):38-41.[季曼 E.H. 金在水中的高温溶解和金矿床的成因[J]. 黄金, 1990, 11(2):38-41. ]
[40] E H. High-temperature dissolution of gold in water and genesis of gold deposits(continue)[J].Gold, 1990, 11(3):45-47.[季曼 E.H. 金在水中的高温溶解和金矿床的成因(续)[J]. 黄金, 1990, 11(3):45-47.]
[41] Sheng, Liu Yushan. Experiment research of gold solution and geology significance[J]. Geochemistry, 1995, 24(Suppl.): 168-176.[张生, 刘玉山. 金溶解度实验研究及地质意义[J]. 地球化学, 1995, 24(增刊): 168-176.]
[42] T W. Transport and deposit of gold in hydrothermal system[J]. Foreign Precambrian Geology, 1985, (2):59-72.[Seward T W. 金在热液系统中的搬运和沉淀[J]. 国外前寒武纪地质,1985, (2):59-72.]
[43] A E, Bowell Robert, Migdisov A A. Gold in solution[J]. Elements, 2009, 5: 281-287.
[44] Ralph G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85 (22):3 533-3 539.
[45] Dimitrios, Wood Scott A. Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1990, 54: 3-12.
[46] Qingcheng, Lü Xinbiao, Gao Qi, et al. Dissolution and migration of Au in hydrothermal ore deposit: A review[J]. Advances in Earth Science, 2012, 27(8):847-856.[胡庆成,吕新彪,高奇,等. 热液金矿金的溶解和迁移研究进展[J].地球科学进展,2012, 27(8):847-856.]
[47] J A. The speciation of gold in aqueous solution: A theoretical study[J]. Geochimica et Cosmochimica Acta, 1996, 60:17-29.
[48] Xiandong, Lu Xiancai, Wang Rucheng, et al. Speciation of gold in hydrosulphide-rich ore-forming fluids: Insights from first-principles molecular dynamics simulations[J].Geochimica et Cosmochimica Acta, 2011, 75: 185-194.
[49] C H, Williams-Jones A E. The disproportionation of gold(I)chloride complexes at 25 to 200 ℃[J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 971-1 983.
[50] T, Guenther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399:676-679.
[51] C A, Ryan C G, Mernagh T P, et al. Segregation of ore metals between magatic brine and vapor: A fluid inclusion study using PIXE microanalysis[J]. Economic Geology, 1992, 87: 1 566-1 583.
[52] C A, Günther D, Audétat A. Metal fraction between magmatic brine and vapor, determinded by microanalysis of fluid inclusions[J]. Geology, 1999, 87:755-758.
[53] Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of researches on the evolution of ore-forming fluids and vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review, 2009, 55(1): 100-112.[冷成彪, 张兴春, 王守旭,等.岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评, 2009, 55(1): 100-112.]
[54] D Y, Migdisov A A, Williams-Jones A E. The solubility of gold in H2O-H2S vapour at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 140-5 153.
[55] Ronghua, Hu Shumin, Zhang Xuetong. Transportation of Au and Cu by vapor andrelated ore genesis[J]. Mineral Deposits, 2006, 25(6): 705-714.[张荣华, 胡书敏, 张雪彤. 金铜在气相中的迁移实验及矿石的成因[J]. 矿床地质, 2006, 25(6): 705-714.]
[56] D Y, Migdisov A A, Williams-Jones A E. The solubility of gold in hydrogen sulphide gas: An experimental study[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3 070-3 081.
[57] A C, Pettke T, Candela P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environment[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4 905-4 914.
[58] Z, Halter W E, Pettke T, et al. Determination of fluid/melt partition coefficients in volatile saturated magmatic systems by LA-ICP-MS analysis of coexistent fluid and silicate melt inclusions[J]. Geochimica et Cosmochimica Acta, 2008, 72:2 169-2 179.
[59] Jun, Wang Henian. Geochemistry[M]. Beijing: Science Press, 2004.[陈俊,王鹤年. 地球化学[M]. 北京:科学出版社, 2004.]
[60] Katherine A, Noble D C, Bussey Steven D, et al. Initial gold contents silicic volcanic rocks: Bearing on the behavior of gold in magmatic systems[J]. Geology, 1993, 21: 937-940.
[61] Leyla. Solubility of Gold in Granitic Melts and Partitioning of Au between Melt and NaCl-Saturated Fluid or Sulfides[D]. Montreal: McGill University, 1999.
[62] H St C, Dingwell D B, Borisov A, et al. Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle’s early history[J]. Chemical Geology, 1995, 120:255-273.
[63] G W E , Samis C S. Activities of ions in silicate melts[J]. Transactions of the Metallurgical Society of AIME, 1962, 224: 878-887.
[64] A, Palme H. Experimental determination of the solubility of Au in silicate melts[J]. Mineralogy and Petrology, 1996, 56: 297-312.
[65] Sébastien, Pichavant M, Mavrogenes J A. Controls on gold solubility in arc magmas: An experimental study at 1000 ℃and 4 kbar[J]. Geochimica et Cosmochimica Acta, 2010, 74: 2 165-2 189.
[66] A, Palme H, Spettel B. The solubility of gold in silicate melts: First results[C]∥Proceedings of the 24th Lunar Planetary Sciences Conference. Houston: Lunar and Planetary Institute, 1993: 147-148.
[67] Yinwen, Ma Zhendong. Geochemistry[M]. Beijing: Geological Publishing House, 2003.[韩吟文,马振东. 地球化学[M]. 北京:地质出版社,2003.]
[68] Zhisheng, Huang Zhilong, Zhu Chengming. Silicate melt texture and liquid immiscibility[J]. Geology-Geochemistry, 1997,(1):60-64.[金志升,黄智龙,朱成明.硅酸盐熔体结构与岩浆液态不混溶作用[J].地质地球化学,1997,(1):60-64.]
[69] J D, Holloway J R. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas[J]. Geological Society of America Special Paper, 1990, 246: 21-34.
[70] S C, Oupree R, Mortuza M G, et al. NMR evidence for five- and six-coordinated aluminum fluoride complexes in Fbearing aluminosilicate glasses[J]. American Mineralogist, 1991, 76: 309-312.
[71] T, Dingwell D B, Keppler H, et al. Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study[J]. Geochimica et Cosmochimica Acta, 1992, 56:701-707.
[72] D R. The effect of F and Cl on the interdiffusion of peralkaline intermediate and silicic melts[J]. American Mineralogist, 1993, 78:316-324.
[73] Xiaoyan, Bi Xianwu, Cai Guosheng, et al. Apreliminary experimental study on the solubility of gold in granitic silicate melts[J]. Acta Mineralogica Sinica, 2012, 32: 22-27.[胡晓燕, 毕献武, 蔡国盛, 等. 金在花岗质熔体中溶解度的初步实验研究[J]. 矿物学报, 2012, 32: 22-27.]
[74] M A, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[J]. Reviews in Mineralogy, 1994, 30:231-279.
[75] J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 800 ℃[J]. Geochimica et Cosmochimica Acta, 1992, 56: 679-687.
[76] S C, Schoifeld P F. The implication of melt composition in controlling trace-element behavior: An experimental study of Mn and Zn partitioning between forsteirte and silicate melts[J]. Chemical Geology, 1994, 117: 73-87.
[77] I, Mysen B O. A possible effect of melt structure on the Mg-Fe partitioning between olivine and melt[J]. Geochimica et Cosmochimica Acta, 2002, 66(12): 2 267-2 272.
[78] V R, Westrenen W V, Fei Y. Expeirmental evidence that potassium is a substantial radioactive heat source in planetary cores[J]. Nature, 2003, 423: 163-165.
[79] J B, Mahood G A, Hervig R L, et al. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pnatellera, Italy[J].Contributoin to Mienraolgy and Petrology, 1993,114: 119-129.
Outlines

/