Articles

ADVANCES IN THE RESEARCH ON ORBITAL FORCING SEDIMENTARY RHYTHM—A DISCUSSION ON THE IMPLICATIONS TO SEDIMENTOLOGY, CHRONOLOGY AND STUDYING METHODS

Expand
  • Geology Institute, CAS, Beijing 100029

Received date: 1997-04-11

  Revised date: 1997-11-15

  Online published: 1998-06-01

Abstract

The orbital forcing cycles, i.e., Milankovitch cycles, are common sedimentary rhythms presented within the ancient deposits, which is key subjects in astrogeology,stratigraphy and sedimentology. Since 19th century, a cyclicity orrhythm of eccentricity,obliquity and precession of Earth orbital paths has been discovered and widely discussed by the researchers all the world. A mechanics of orbital forcing climate cycle, which has a strong effect on depositional sequences through the albedo systems, was focused in a variety of case studies from Quaternary to Precambrian records. The orbital cycles not only display a rhythm itself, but also control depositional stacked patterns, i.e., sedimentary rhythms, from deep sea to tidal settings. Since orbital forcing cycles are characterized by a variation of frequency they have an implication of chronology and give a high resolution durations of stratigraphy, depositional sequences, geological events and biota zones etc. This paper gives a general reviews of the advances in research on orbital cycles, and an approach to the study, including mathem tics and geology based on the studies abroad and home.

Cite this article

Liu Yongqing . ADVANCES IN THE RESEARCH ON ORBITAL FORCING SEDIMENTARY RHYTHM—A DISCUSSION ON THE IMPLICATIONS TO SEDIMENTOLOGY, CHRONOLOGY AND STUDYING METHODS[J]. Advances in Earth Science, 1998 , 13(3) : 217 -224 . DOI: 10.11867/j.issn.1001-8166.1998.03.0217

References

[1] Einsele G, Ricken W, eds. Cycles and Events in Stratigraphy. Spinger-Verlag, 1991.
[2] Schwarzacher W. Cyclostratigraphy and the Milankovitch Theory. Elsevier, 1993.
[3] 徐道一. 天文地质学概论. 北京: 地质出版社, 1983.
[4] Berger A.Milankovitch theory and climate. Rev Geophys, 1988, 26:624~657.
[5] Berger A. Pre-Quaternary Milankovitch frequencies.Nature,1989,342(9):133.
[6] Einsele,Seilacher,eds.Cyclic and Event Stratification.Spinger-Verlag,1982.
[7] 刘承祚. 全球变化过程的数学模拟和定量预测. 第四纪地质,1993,(2):97~107.
[8] Berger A. Influence of the changing lunar orbit on the astronomical frequencies of Pre-Quaternary Insolation patterns.Paleoceanography, 1989, 4(5): 555~564.
[9] Research on Cretaceous Cycles Group. Rhythmic bedding in Upper Cretaceous pelagic carbonate sequences: Varying sedimentary response to climatic forcing. Geology, 1986, 14:153~156.
[10] Fischer A G. Albian pelagic rhythms(Piobbico core). Journal of Sedimentary Petrology, 1991, 61(7):1 164~1 172.
[11] Fischer A G.Cyclostratigraphy of Cretaceous chalk-marl sequences. In:Caldwell W G E,ed.Evolution of the Western Interior Basin.Geological Association of Canada.Special Paper 39, 1993. 283~295.
[12] Weedon G P. The recognition and stragraphic implications of orbital-forcing of climate and sedimentary cycles. In: Paul Wright, ed. Sedimentary Review/1.Oxford:Blackwell Scientific Publications, 1993.
[13] Williams George E. Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician-Early Silurian glaciation, Canning Basin, Western Australia. Earth and Planetary Science Letters, 1991, 103:143~155.
[14] Goldhammer P K, Lemann P J, Dunn P A. The origin of high-frequency platform carbonate cycles and third-order sequences. Jour Sedim Petro, 1993, 63(3): 318~359.
[15] Goldhammer P K,Dunn P A, Hardie L A.High-frequency(sci) glacio-eustatic sea-level oscillation with Milankovitch characteristics recorded in Mid-Triassic platform carbonates in Northern Italy.American Journal of Science, 1987, 277: 853~892.
[16] Osleger D A, Read J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, USA. Journal of Sedimentary Petrology, 1991, 61:1 225~1 252.
[17] Goldhammer P K, Osleger D A. Depositional cycles, composite sea-level changes, cycle stacking patterns and the hierarchy of stratigraphic forcing: Example from Alpins Triassic platform carbonatea. Geol Soc Am Bull, 1990, 102: 535~552.
[18] Wang H Z, Shi X Y. A scheme of the hierarchy for sequence stratigraphy. Journal of China University of Geo-sciences, 1996, 7(1): 1~12.
[19] Ge M,Liu Y Q,Meng X H.Field trip T313 guidebook of the 30th International Geological Congress:The depositional sequences and the evolutionary history of the North China carbonate platform of early Paleozoic. Geological Publishing House, 1996.
[20] Meng X H, Liu Y Q, Ge M. Field trip T224 guidebook of the 30th International Geological Congress: The Cambrian deposition facies, sequence stratigraphy, and the high-frequency cyclic sequences of the carbonate platform at the Western Hills. Geological Publishing House, 1996.
[21] Meng X H, Ge M, Chief eds; Liu Y Q Assi ed. Sinian-Ordovician paleogeography, cyclity-rhythm and sedimentary events of China. International Academic Publishers, 1996.
[22] Meng X H,Ge M,Liu Y Q,et al.A study on sea-level fluctuation geodynamics of carbonate depositional cycles in the North China platform. Acta Sedimentologica Sinica, 1996, 14(2): 29~40.
[23] Liu B.30th IGC Abstract 2/3.Beijing,China,1996.
[24] 王立峰. 冀中中奥陶统高频率旋回层序基本特征. 岩相古地理,1994,14(6):49~58.
[25] 殷鸿福. 二叠—三叠系研究进展. 地球科学进展, 1994, 9(2):1~8.
[26] 张克信. 浙江长兴二叠—三叠系界线剖面层序地层研究. 地质学报, 1996, 70(3): 270~281.
[27] 陆元法编译. 旋回地层学. 岩相古地理, 1989, (1): 35.
[28] 陆元法编译. 旋回地层学. 岩相古地理, 1991, (1): 50~61.
[29] Heckel P H. Sea-level curve for Pennsylvanian eustatic marine transgress ive-regressive depositional cycles along mid-continent outcrop belt, North America. Geology, 1986, 14: 330~334.
[30] Heckel P H. Evidence for global(glacial-eustatic) control over upper carboniferous(Pennsylvanian) cyclothems in midcontinent North America. In: Hardman R F P, Brooks J, eds. Tectonic events responsible for Britain's oil and gas reserves. Geol Soc London: Spec Publ, 1990, 55: 35~47.
[31] House M R.A new approach to a absolute time scale from measurements of orbital cycle and sedimentary microrhythms. Nature, 1985, 316: 721~725.
[32] Trendall A F. Varve cycle in the Weeli Wolli formation of the Precambrian hamersley group,Western Austrilia.Economic Geology, 1973, 68(7): 1 089~1 097.
[33] Timothy D H, Steven H L D. Precessional climate cyclocity in Late Cretaceous-Early Tertiary marine sediments:a high resolution chronometer of Cretaceous-Tertiary boundary events.Earth and Planetary Science Letters, 1990, 99: 263~275.
[34] Antoinette S. Orbital forcing of calcilutite-marly cycles in southeast Spain and an estimate for the duration of the Berriasian stage. Geological Society of America Bulletin, 1993, 105: 807~818.
[35] Cecil C B. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 1990, 18: 533~536.
[36] Connolly W M. Interbasinal cyclostratigraphic correlation of Milankovitch band trangressive-regressive cycles: Correlation of Desmoinesian-Missourian strata between southeastern Arizona and the midcontinent of North America. Geology, 1992, 20: 999~1002.
[37] Algeo T J. Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation.J Geol, 1989, 96: 313~322.
[38] 柳永清, 宋立衡. 影响沉积盆地相对海平面的多重因素和旋回层序响应. 岩相古地理, 1997, 17(1) .
[39] 柳永清, 李寅, 刘晓文. 层序地层、旋回地层与多重地层划分——以京西冀北下古生界为例. 中国区域地质, 1997, 16(1): 81~88.

Outlines

/