APPLICATION OF SOLID STATE 13C NMR TECHINIQUES TO PETROLEUM GEOCHEMISTRY
Received date: 1997-07-18
Revised date: 1997-12-12
Online published: 1998-06-01
The structure and evolution characteristics of hydrocarbon generation material is an important problem for the study on petroleum geochemistry. With the occurrence of new analysis method, the component and structure study of hydrocarbon generation material has been made large development which is froming the element to functional groups analysis. The solid state 13C NMR spectroscopy gives the content of different functional groups, further, the every kind of structure parameters can be calculated. The structure information has been made a new analysis from the angle of the evaluation of source rocks, the hydrocarbon generation evolution and mechanism of source rocks, and the maturity indicators of source rocks, etc. It has been calculated that the aliphatic carbon is the major contributor of oil and gas, the content of oil and gas potential carbon determinated the hydrocarbon generation potential of source rocks, and the average aromatic cluster size is an effective and recommendable evolution indicator. The solid state 13C NMR techiniques open a new field for the study on petroleum geochemistry.
Wang Zhaoyun,Cheng Keming . APPLICATION OF SOLID STATE 13C NMR TECHINIQUES TO PETROLEUM GEOCHEMISTRY[J]. Advances in Earth Science, 1998 , 13(3) : 246 -250 . DOI: 10.11867/j.issn.1001-8166.1998.03.0246
[1] Wilson M A. NMR techniques and application in geochemistry and soil chemistry. Pergamon Oxford, 1979.
[2] Axelson D E. Solid state nuclear magnetic resonance of fossil fuels. Multiscience,Canada Press, 1985.
[3] Axelson D E. Spinning side-band suppresion and quantitative analysis in solid state 13C NMR of fossil fuels. Fuel,1987, 66: 195~198.
[4] Slichter C P. Principles of magnetic resonance. Springer-Verlag, 1983. 93~172.
[5] Bartuska V J,Maciel G B,Schaefer,et al.Prospects for 13C nuclear magnetic resonance analysis of solid state fuel materials. Fuel, 1977, 56: 354~357.
[6] Barwise A J G, Mann A L, Eglinton G, et al. Kerogen characterization by NMR spectroscopy and pyrolysis mass spectrometry. Organic Geochem, 1984, 6:343~349.
[7] Supaluknari S, Burgar L, Larkins F P, et al. High-resolution solid state NMR studies of Australian coals. Org Geochem, 1990, 15(5): 509~519.
[8] Schenk H J, Witte E G, Schwochau k. Structural modifications of vitrinite and alginite concentrates during pyrolytic maturation at different heating rates: A combined infrared,13C NMR microscopical study. Org Geochem, 1990, 16:943~950.
[9] 陈鹏, Kalman J R, Odily D M. 兖州煤的芳碳率——CP/MAS 13C核磁共振法. 炼焦化学, 1984, 285~289.
[10] 叶朝辉, 李新安. 煤的固体高分辨13C NMR谱. 科学通报, 1985, 30: 1545~1547.
[11] 叶朝辉,Wind R,Maciael G E. 中国煤的磁共振研究. 中国科学(A辑), 1988, 2:163~172.
[12] 陈德玉,刘德汉,叶朝辉.富氢煤的固体高分辨13C NMR谱初步研究及其与生烃的关系.中国科学院有机地球化学开放研究实验室研究年报.北京:科学出版社,1988.164~173.
[13] 李振广, 秦匡宗. 用13C NMRCP/MAS波谱表征干酪根的性质. 石油学报, 1990, 11(4) : 25~32.
[14] 胡建治, 叶朝辉, 陈德玉. 强场下煤的13C NMR谱. 波谱学杂志, 1991, 8(1): 81~87.
[15] Yoshida T, Maekawa Y. Characterization of coal structure by CP/MAS C-13 NMR spectroscopy, in coal characterization for conversion process. Amsterdam: Elsevier, 1987. 385~395.
[16] Theriault Y, Axelson D E. Solid state 13C NMRD ipolar dephasing study of Canadian coals. Fuel, 1988, 67: 62~67.
[17] Boucher R J, Standen. G, Patience R L, et al. Molecular characterization of kerogen from the kimmeridge clay formation by mild selective chemical degradation and solid state 13C NMR. Org Geochem, 1990, 16:951~958.
[18] Hatcher P G. Chemical structure studies of natural lignin by dipolar dephasing solid nuclear magnetic resonance. Org Geochem, 1987, 11: 31~39.
[19] 胡建治, 李丽云, 杨年华, 等, 镜煤及其吡啶不溶物与可溶物的固体13C NMR研究. 中国科学(A辑), 1992, 4: 425~432.
[20] Dennis L W. 13C nuclear magnetic resonance studies of kerogen from cretaceous black shale thermally altered by basaltic instursions and laboratory simulation.Geochim et Cosmochim Acta, 1982, 46: 901~907.
[21] 秦匡宗, 吴肖令. 高磁场固体13C核磁共振法研究干酪根的热降解成烃机理. 沉积学报, 1991, 1: 19~28.
[22] 秦匡宗, 陈德玉, 李振广, 等. 用固体13C核磁共振波谱测算煤与干酪根油气的一种新方法. 煤成油地球化学新进展. 北京: 石油工业出版社,1992. 38~51.
[23] 秦匡宗, 陈德玉, 李振广. 干酪根的13C NMR研究——用有机碳三种结构组成表征干酪根的演化. 科学通报, 1990,35: 1 729~1 733.
[24] Bates A L, Patrick G H. Solid~state 13C NMR studies of a large fossil gymnosperm from the yallourn open cut, Latrobe Valley,Australia.Org Geochem, 1989, 14(6): 609~617.
[25] Trewhella M J, Poplett J F, Grint A. Structure of green River oil shale kergen-determination using solid state 13C NMR spectroscopy.Fuel, 1996, 65(4): 541~546.
[26] 秦匡宗, 李振广, 勃达也夫 H. 干酪根的13C NMR研究——偶极相移技术的应用. 科学通报, 1992, 37(8): 721~723.
[27] Wilson M A, Pugmire R J, Karas J, et al. Carbon distribution in coals and coal macerals by CP/MAS 13C NMR spectroscopy. Anal Chem, 1984, 56(6): 959~968.
[28] Hatcher P G. Chemical structure models for coalified wood (vitrinite) in low rank coal. Org Geochem, 1990, 16(4~6): 959~968.
[29] Attar A, Hendrickson G G. Functional groups and heteroatoms in coal. In: Meyers R A, ed. Coal Structure. New York:Academic Press, 1982. 132~198.
[30] Witte E G, Schenk H. J, Muller P J. Structural modification of kerogen during natural evolution as dervied from 13C CP/MASNMR,IR spectroscopy and rock-eval pyrolysis of Toarcian shales.Org Geochem, 1988, 13:1 039~1 044.
[31] Wang Zhaoyun, Cheng Keming, Zhaochangyi, et al. Contributors and potential of hydrocarbon generation of source rocks by solid-state 13C spectroscopy.Science Bulletin, 1997, 42(6): 478~481.
[32] Wilson M A, John V H, Ken B A, et al. 1H CRAMPS NMR deried hydrogen distribution in various coal macerals.Org Geochem, 1993, 20(7): 985~999.
[33] Alder E. Lign in chemis ry-past, present and future. Wood Sci Technol, 1989, 11: 69~218.
[34] Solum M S, Ronald J P. 13C solid state NMR of Argonne Premium coals. Energy and Fuels, 1989, 3(2): 187~193.
[35] Van Krevelen D W.Coal.Amsterdam:Elsevier, 1961. 162~210.
[36] Wang Zhaoyun, Cheng Keming, Fa Pu. The thermal evolution indicator of carbonate rocks. Science in China, 1995,38(6): 733~740.
/
〈 |
|
〉 |