Articles

A REVIEW ON RESEARCHES OF PARTICLE/WATER INTERACTION IN PRESENCE OF MICROORGANISM

Expand
  • 1.The State Key Laboratory of Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002,China;2.Graduate School of Chinese Academy Science, Beijing 100039,China

Received date: 2001-01-17

  Revised date: 2002-03-31

  Online published: 2002-10-01

Abstract

This review addresses adsorption at particle/water interface in the presence of microorganism, which are microorganism/metal ions adsorption, mineral particle/microorganism adsorption and particle/water adsorption in presence of microorganism. Mostly, there are bulk partition relationships and site specific (surface complexation) models which quantify these adsorption reactions. Among them, bulk partition approaches can be measured directly from the field, but only the site specific models can be extrapolated to conditions not directly studied in the laboratory,because they treat the adsorbed solute as another species whose thermodynamic stability can be quantified with an equilibrium constant. People pay more and more attention to particle/water interaction in presence of microorganism and model which can account for and predict adsorption have been stressed, when the importance of microorganism is known more.

Cite this article

WAN Ying-xin, LIU Cong-qiang, FU Ping-qing, LIU Jian-jun . A REVIEW ON RESEARCHES OF PARTICLE/WATER INTERACTION IN PRESENCE OF MICROORGANISM[J]. Advances in Earth Science, 2002 , 17(5) : 699 -704 . DOI: 10.11867/j.issn.1001-8166.2002.05.0699

References

[1]Hart B T. Uptake of trace metals by sediments and suspended particulates: a review[J]. HydrobioLogia, 1982, 91:299-313.
[2]Nathan Y, Jeremy B F, Christopher J D. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption[J]. Geochimica et Cosmochimica Acta, 2000, 64:609-617.
[3]Fein J B, Daughney C J, Yee N,et al.A chemical equilibrium model for metal adsorption onto bacterial surfaces[J]. Geochimica et Cosmochimica Acta, 1997, 61:3 319-3 328.
[4]Fowle D A,Fein J B. Competitive adsorption of metal cations onto two gram positive bacteris: Testing the chemical equilibrium model[J]. Geochimica et Cosmochimica Acta, 1999, 63:3 059-3 067.
[5]Mullen M D, Wolf D C, Ferris F G,et al.Bacterial sorption of heavy metals[J]. Applied and Environmental Microbiology, 1989, 55:3 143-3 149.
[6]Harden B P,Harris J O. The isoelectric point of bacterial cells[J]. Journal of Bacterial, 1953, 65:198-202.
[7]Beveridge T J,Koval S F. Binding of metals to cell envelopes ofEscherichia coliK-12[J]. Applied and Environmental Microbiology, 1981, 42:325-335.
[8]Collins Y E,Stotzky G. Heavy metals alter the electrokinetic properties of bacteria,yeasts, and clay minerals[J]. Applied and Environmental Microbiology, 1992, 58:592-1 600.
[9]Baveridge T J, Doyle R J. Metals Ions and Bacterial[M]. New York: John Wiley & Sons Inc, 1989.1-29.
[10]Beveridge T J. The response of cell walls ofBacillus subtilisto metals and to electron-microscopic stains[J]. Canadian Journal of Microbiology, 1978, 24:89-104.
[11]Beveridge T J,Murray R G E. Uptake and retention of metals by cell walls ofBacillus subtilis[J]. Journal of Bacteriology, 1976, 127:1 502-1 518.
[12]Herald P J,Zottola E A. Effect of various agents upon the attachment of Pseudomonas fragi to stainless steel[J]. Journal of Food Science, 1989, 54:461-464.
[13]Mclean R J C, Beauchemin D, Beveridge T J. Influence of oxidation state on iron binding byBacillus licheniformis capsule[J]. Applied and Environmental Microbiology, 1992, 58:405-408.
[14]Mayers I T,Beveridge T J. The sorption of metals toBacillus subtiliswalls from dilute solutions and simulated Hamilton harbor (Lake Ontario) water[J]. Canadian Journal of Microbiology, 1989, 35:764-770.
[15]Plette A C C, Benedetti M F,  Van Riemsdijk W H. Competitive binding of prontons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium[J]. Environmental Science & Technology, 1996,30:1 902-1 910.
[16]Koopal L K, Van Riemsdijk W H, De Wit C M,et al.Analytical isotherm equations for multicomponent adsorption to heterogenous surfaces[J]. Journal of Colloid Interface Science, 1994, 166: 51-60.
[17]Benedetti M F, Miline C J, Kinniburgh D G,et al.Metal ion binding to humic substances: Application of the non-ideal competitive adsorpion model[J]. Environmental Science & Technology, 1995, 29:446-457.
[18]Daughney C J, Fein J B,  Yee N. A comparison of the thermodynamics of metal adsorption onto two common bacteria[J]. Chemical Geology, 1998, 144:4161-176.
[19]Westall J C. FITEQL, a Computer Program for Determination for Chemical Equilibrium Constans from Experimental Data[R]. Version 2.0 Report 82-02  Depatment Chemical, Oregon: St University, Corvalli OR, USA 1982.
[20]Walker S G, Flemming C A, Ferris G G,et al.Physicochemical interaction ofEscherichia colicell envelopes andBacillus subtiliscell walls with two clays and ability of the composite to immobilize heavy metals from solution[J]. Applied and Environmental Microbiology, 1989, 55:2 976-2 984.
[21]van Loosdrecht M C C, Lyklema J, Norde W,et al. Bacterial adhesion: A physicochemical approach[J]. Microbial Ecology, 1989, 17:1-15.
[22]Scholl M A, Mills A L, Herman J S,et al.The Influence of Mineralogy and Solution chemistry in the attachment of bacteria to representative aquifer materials[J]. Journal of Contamicant Hydrology, 1990, 6:321-336.
[23]Scholl M A,Harvey R W. Laboratory investigation on the role of sediment surface and groundwater chemistry in the transport of bacteria through a contaminated sandy aquifer[J]. Environmental Science & Technology, 1992, 26:1 410-1 417.
[24]Mills A L,Dejesus T H. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied Environmental Microbiology, 1994, 60:3 300-3 306.
[25]Aaron L M, Herman J S, George M H,et al.Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied and Environmental Microbiology, 1994, 60:3 300-3 306.
[26]Ohmura N, Kitamura K,  Saiki H. Selective adhesion of Thiobacillus Ferrooxidans to pyrite[J]. Applied and Environmental. Microbiology, 1993, 59:4 044-4 050.
[27]Devasia P, Natarajan K A, Sathyannarayana D N,et al.Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces[J]. Applied and Environmental Microbiology, 1993, 59:4 051-4 055.
[28]Gratham M C,Dove P M. Investigation of bacterial mineral interactions using Fluid Tapping Mode Atomic Force Microscopy[J]. Geochimica et Cosmochimica Acta, 1996, 60:2 473-2 480.
[29]Grantham M C, Dove P M, Dichristina T J. Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings[J]. Geochimica et Cosmochimica Acta, 1997, 61:4 467-4 477.
[30]Elimelech M, O'Melia C R. Kinetics of deposition of colloidal particles in porous media[J]. American Chemical Society, 1990, 24:1 528-1 536.
[31]Gannon J T, Manilal V B, Alexander M. Relationship between cell surface properties and transport of bacteria through soil[J]. Applied Environmental Microbiology, 1991, 57:190-193.
[32]Reddy R G, Wang S,  Torma A E. A preliminary thermodynamic study of bacterial attachment on uranium contaminated soils from Fermald[A]. Torma A E,  Wey J E, Lakshmanan V L. Biohydrometallurgical Technologies[C]. The Mineral Metal and Material Society, 1993.715-729.
[33]Flemming C A, Ferris F G, Beveridge T J,et al.Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites[J]. Applied and Environmental Microbiology, 1990, 56:3 191-3 203.
[34]Urrutia M M,Beveridge T J. Remobilization of heavy metals retained as oxhydroxides or silicates byBacillus subtiliscells[J]. Applied and Environmental Microbiology, 1993, 59:4 323-4 329.
[35]Small T D, Warren L A, Ferris F G. Influence of ionic strength on strontium sorption to bacteria, Fe(Ⅲ) oxide, and composite bacteria-Fe(Ⅲ) oxide surface[J]. Applied Geochimistry, 2001, 16:939-946.

Options
Outlines

/