Elemental Geochemical Records in the Western South China Sea since 540 ka and Their Paleoenvironmental Implications
Received date: 2012-02-01
Revised date: 2012-02-25
Online published: 2012-03-10
High-resolution carbonate stratigraphy and XRF core-scanning elemental geochemistry were analyzed at Core MD05-2899 in the upwelling area of the western South China Sea to reconstruct the evolution history of the East Asian Summer Monsoon (EASM) over the past 540 ka in the late Quaternary and to study the effect of sea level change on terrigenous material supply to the western South China Sea. Three proxies of elemental ratios were chosen for indicating paleoenvironmental changes: ln(Ba/Al) for the paleoproductivity, ln(Br/Al) for the organic matters, and ln(Ti/Al) for the terrigenous material supply. Our results show that the EASM has been continually enhanced over the past 540 ka and presents strong glacial-interglacial cyclicity with strengthened intensity during interglacials and vice versa. The EASM could be the major factor controlling the variation pattern of organic matters in the western South China Sea. The strengthened EASM could directly enhance the precipitation on lands surrounding the South China Sea, increase the runoff of their drainage basins, and finally produce higher terrigenous material supply during interglacial than glacial periods in the western South China Sea. However, when the relative sea level was lower than 60 m during glacial periods, the broad part of the Sunda Shelf was exposed and enormous amount of terrigenous materials could be eroded and then transported far to the western South China Sea, resulting in the strong terrigenous material supply during glacial maximum periods at Core MD05-2899. Therefore, we suggest that the late Quaternary EASM and sea level change could jointly control the variation of terrigenous material supply in the upwelling area in the western South China Sea.
He Ziding, Liu Zhifei, Li Jianru, Xie Xin . Elemental Geochemical Records in the Western South China Sea since 540 ka and Their Paleoenvironmental Implications[J]. Advances in Earth Science, 2012 , 27(3) : 327 -336 . DOI: 10.11867/j.issn.1001-8166.2012.03.0327
[1]Wang Pinxian. Global monsoon in a geological perspective[J].Chinese Sciences Bulletin, 2009, 54(7): 1 113-1 136.[汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54 (5): 535-556.]
[2]Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J].Review of Geophysics, 1994, 32:427-476.
[3]Wang P X, Li Q. Introduction[C]∥Wang P X, Li Q,eds. The South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:1-23.
[4]Huang Wei, Wang Pinxian. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation[J].Science in China (Series D), 1998, 41(2): 195-201.[黄维, 汪品先. 末次冰期以来南海深水区的沉积速率[J]. 中国科学:D辑, 1998, 28(1): 13-17.]
[5]Huang Wei, Wang Pinxian. Accumulation rate characteristics of deep water sedimentation in the South China Sea during the Last Glaciation and the Holocene[J]. Acta Oceanologica Sinica,2007, 29(5): 69-73.[黄维, 汪品先. 南海深水区末次冰期和冰后期沉积物堆积速率的特征[J]. 海洋学报, 2007, 29(5): 69-73.]
[6]Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1/4): 245-284.
[7]Wang P X, Li Q. Oceanographical and geological background[C]∥Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:25-73.
[8]Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications[J].Earth-Science Reviews, 2011, 104:92-110.
[9]Liu Zhifei, Zhao Yulong, Li Jianru, et al. Late quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian Monsoon evolution[J]. Science in China (Series D),2007, 50(11): 1 674-1 684.[刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J].中国科学:D辑, 2007, 37(9):1 176-1 184.]
[10]Jansen J H F, Van der Gaast S J, Koster B, et al. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores[J].Marine Geology,1998, 151: 143-153.
[11]Zhao Quanhong, Wang Pinxian. Progress in Quaternary paleoceanography of the South China Sea: A review[J].Quaternary Sciences, 1999, 6: 481-499.[赵泉鸿, 汪品先.南海第四纪古海洋学研究进展[J].第四纪研究, 1999, 6: 481-499.]
[12]Huang C Y, Wang C C, Zhao M. High-resolution carbonate stratigraphy of IMAGES core MD972151 from South China Sea[J].Terrestrial, Atmospheric and Oceanic Sciences (TAO), 1999, 10(1): 225-238.
[13]Weltje G J, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application[J].Earth and Planetary Science Letters,2008, 274(3/4): 423-438.
[14]Calvert S E, Pedersen T F. Chapter fourteen: Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[C]∥Claude H M, Anne De V, eds. Developments in Marine Geology. Elsevier, 2007:567-644.
[15]Liu Z F, Huang W, Li J, et al. Sedimentology[C]∥Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:171-295.
[16]Zhao M, Wang P X, Tian J, et al. Biogeochemistry and the Carbon reservoir[C]∥Wang P, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:439-483.
[17]Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor (IPEV), 2005.
[18]Tjallingii R, Rohl U, Kolling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J].Geochemistry Geophysics Geosystems, 2007, 8(2): Q02004, doi: 10.1029/2006GC001393.
[19]Wang Pinxian. Glacial carbonate cycles in western pacific marginal seas[J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.[汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1): 1-11.]
[20]Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7: 143-162.
[21]Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J].Paleoceanography, 2005, 20, PA1003, doi:10.1029/2004PA001071.
[22]Paillard D, Labeyrie L, Yiou P. Macintosh Program performs time-series analysis[J]. Eos, Transactions American Geophysical Union, 1996, 77(39):379.
[23]Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[C]∥Berger A, Imbrie J, Hays H, et al, eds. Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel Publishing Company, 1984:269-305.
[24]Thompson P R, Be A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280:554-558.
[25]Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic Sediments[J]. Paleoceanography, 1994,9(1):151-168.
[26]Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J].Paleoceanography, 2000, 15(6): 570-592.
[27]Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of pliocene south china sea sediments[J]. Earth and Planetary Science Letters, 2002,201: 621-636.
[28]Wehausen R, Tian J, Brumsack H J, et al. Geochemistry of Pliocene sediments from ODP Site 1143 (southern South China Sea)[C]∥Prell W L , Wang P, Blum P, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 184: College Station, TX (Ocean Drilling Program). 2003.
[29]Tian J, Xie X, Ma W, et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 2011, 26, PA4202, doi: 10.1029/2010PA002045.
[30]Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al[J].Paleoceanography, 2000, 15(2): 210-228.
[31]Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry Geophysics Geosystems, 2008, 9, Q05009, doi:10.1029/2007GC001932.
[32]Sathiamurthy E, Voris H K. Maps of Holocene Sea level transgression and submerged lakes on the sunda shelf[J].The Natural History Journal of Chulalongkorn University,2006,2(Suppl.): 1-43.
[33]Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J].Quaternary Science Reviews, 2002, 21(1/3): 295-305.
/
〈 |
|
〉 |