Soil Moisture Retrieval from Airborne PLMR and MODIS Productsinthe ZhangyeOasisof MiddleStream ofHeihe River Basin, China
Received date: 2013-12-18
Revised date: 2014-01-23
Online published: 2014-02-10
Copyright
Soil moisture is one of important variables in the climate and hydrology research. Remote sensing can map the soil moisture distribution at regional or global scale. Microwave remote sensing now has been the main method to retrieve soil moisture information, especially using satellite-based passive microwave radiometer. L-band is most suitable for the microwave remote sensing of soil moisture due to its longer wavelength. ESA#cod#x02019;s Soil Moisture and Ocean Salinity (SMOS) satellite uses MIRAS (Microwave Imaging Radiometer by Aperture Synthesis) to get multi-angle and dualpolarized brightness temperatures of land surface at L-band. SMOS aims to get global surface soil moisture through radiative transfer model (L-MEB) and multiparameter retrieval method. SMOS Level 2 surface soil moisture algorithm uses an iterative method to minimize a cost function formulated by difference between modeled and measured brightness temperature.PLMR (Polarimetric L-band Multibeam Radiometer) is an airborne simulator of SMOS MIRAS that can measure passive microwave radiation of land surface at L-band (1.4 GHz) dual polarization and in three different angles(7#cod#x000b0;,21.5#cod#x000b0; and 38.5#cod#x000b0;).This paper uses airborne PLMR radiometer data combined with MODIS LST (MOD11A1) and LAI (MOD15A2) products to retrieve surface soil moisture in the artificial oasis experimental area of HiWATER by L-MEB radiative transfer model and LM (Levenberg-Marquardt) optimization algorithm. The three retrieving strategies are tested, including single, two and three parameters selected from soil moisture, vegetation water content and surface roughness. The comparison analysis shows the multi-angle and dual-polarized PLMR brightness temperatures combined with prior information from operational remote sensing products can obviously reduce the uncertainty of retrieval process and improve the retrieval accuracy. This paper proves that with reasonable model parameters and retrieval method, the L-MEB model can achieve 0.04 cm3/cm3 accuracy requirement for soil moisture retrieval. This paper also reveals the importance of using wireless sensor network in the verification of remote sensing products.
Key words: PLMR radiometer; Soil moisture retrieval; MODIS; Oasis farmland; HiWATER.
Li Dazhi , Jin Rui , Che Tao , Walker Jeffrey , Gao Ying , Ye Nan , Wang Shuguo . Soil Moisture Retrieval from Airborne PLMR and MODIS Productsinthe ZhangyeOasisof MiddleStream ofHeihe River Basin, China[J]. Advances in Earth Science, 2014 , 29(2) : 295 -305 . DOI: 1001-8166(2014)02-0295-11
[1] | Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews,2010, 99(3): 125-161. |
[2] | Kim Jongyoun, Hogue T S. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products[J].IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 446-460. |
[3] | Schmugge T, Gloersen P, Wilheit T, et al. Remote sensing of soil moisture with microwave radiometers[J]. Journal of Geophysical Research, 1974, 79(2): 317-323. |
[4] | Robinson D A, Campbell C S, Hopmans J W, et al. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review[J]. Vadose Zone Journal, 2008, 7(1): 358-389. |
[5] | Li Xiaowen. Retrospect, prospect and innovation in quantitative remote sensing[J].Journal of He#cod#x02019;nan University(Natural Science), 2005, 35(4): 49-56. |
[5] | [李小文. 定量遥感的发展与创新[J]. 河南大学学报:自然科学版, 2005, 35(4): 49-56.] |
[6] | Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687. |
[7] | De Rosnay P, Calvet J C, Kerr Y, et al. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing[J]. Remote Sensing of Environment, 2006, 102(3): 377-389. |
[8] | Panciera R, Walker J P, Kalma J D, et al. The NAFE#cod#x02019;05/CoSMOS data set: Toward SMOS soil moisture retrieval, downscaling, and assimilation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 736-745. |
[9] | Merlin O, Walker J P, Kalma J D, et al. The NAFE#cod#x02019;06 data set: Towards soil moisture retrieval at intermediate resolution[J]. Advances in Water Resources, 2008, 31(11): 1 444-1 455. |
[10] | Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground based experiment in the Heihe River Basin: Scientific objectives and experiment design[J]. Advances in Earth Science, 2008, 23(9): 897-914. |
[10] | [李新, 马明国, 王建, 等. 黑河流域遥感#cod#x02014;地面观测同步试验: 科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.] |
[11] | Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012,27(5): 481-498. |
[11] | [李新, 刘绍民, 马明国, 等. 黑河流域生态#cod#x02014;水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.] |
[12] | Li X, Cheng G, Liu S, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1 145-1 160. |
[13] | Zhong B, Ma P, Nie A, et al. Land cover mapping using time series HJ-1/CCD data[J].Science in China(Series D), 2014, in press. |
[14] | Peischla S, Yea N, Walker J P, et al. Soil moisture retrieval from multi-incidence angle observations at L-band[C]∥19th International Congress on Modelling and Simulation. Perth, Australia, 2011. |
[15] | Liu Chao, Lu Ling, Hu Xiaoli. Comparison analysis on digital soil texture mapping in an area of Zhangye, Heihe River Basin[J]. Remote Sensing Technology and Application,2011, 26(2): 177-185. |
[15] | [刘超, 卢玲, 胡晓利. 数字土壤质地制图方法比较#cod#x02014;#cod#x02014;以黑河张掖地区为例[J]. 遥感技术与应用, 2011, 26(2): 177-185.] |
[16] | Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco-hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9):993-1 005. |
[16] | [晋锐, 李新, 阎保平, 等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.] |
[17] | Jin Rui, Li Xin, Yan Baoping,et al. A nested eco-hydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China[J].IEEE Geoscience and Remote Sensing Letters, 2014, submitted. |
[18] | Kang Jian, Li Xin, Jin Rui, et al.Hybrid optimal design of eco-hydrological wireless sensor network in the middle reach of Heihe River Basin[J].International Journal of Applied Earth Observation and Geoinformation, 2014, preparing. |
[19] | Panciera R, Merlin O, Young R, et al. The Hydraprobe Data Acquisition System (HDAS): User Guide[Z]. 2006. |
[20] | Wigneron J P, Kerr Y, Waldteufel P, et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields[J]. Remote Sensing of Environment, 2007, 107(4): 639-655. |
[21] | Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1 697-1 707. |
[22] | Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research: Oceans(1978-2012), 1982, 87(C13): 11 229-11 237. |
[23] | Wigneron J P, Pard#cod#x000e9; M, Waldteufel P, et al. Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(2): 416-425. |
[24] | Wang J R, Schmugge T J, Gould W I, et al. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields[J]. Geophysical Research Letters, 1982, 9(4): 416-419. |
[25] | Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36(3): 203-212. |
[26] | Van de Griend A A, Wigneron J P. The b-factor as a function of frequency and canopy type at H-polarization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 786-794. |
[27] | Wang J R, Choudhury B J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research: Oceans (1978-2012), 1981, 86(C6): 5 277-5 282. |
[28] | Ulaby F T,Moore R K,Fung A K. Microwave Remote Sensing#cod#x02014;Active and Passive[M]. Norwood, MA: Addison-Wesley Publishing Company, 1986. |
[29] | Dobson M C, Ulaby F T, Hallikainen M T, et al. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985,(1): 35-46. |
[30] | Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 215-229. |
[31] | Escorihuela M J, Kerr Y H, de Rosnay P, et al. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 1 978-1 987. |
[32] | Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research: Oceans (1978-2012), 1982, 87(C2): 1 301-1 304. |
[33] | Holmes T R H, De Rosnay P, De Jeu R, et al. A new parameterization of the effective temperature for L band radiometry[J]. Geophysical Research Letters, 2006, 33(7):1-4. |
[34] | Pard#cod#x000e9; M, Wigneron J P, Waldteufel P, et al. N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1 168-1 178. |
/
〈 |
|
〉 |