Parameter Estimation and Experimental Design in Groundwater Modeling
Received date: 2004-04-09
Online published: 2004-06-01
This paper reviews the latest developments on parameter estimation and experimental design in the field of groundwater modeling.Special considerations are given when the structure of the identified parameter is complex and unknown.A new methodology for constructing useful groundwater models is described, which is based on the quantitative relationships among the complexity of model tructure,the identifiability of parameter,the sufficiency of data,and the reliability of model application.
SUNNe-zheng . Parameter Estimation and Experimental Design in Groundwater Modeling[J]. Advances in Earth Science, 2004 , 19(3) : 409 -414 . DOI: 10.11867/j.issn.1001-8166.2004.03.0409
[1]Sun N Z. Inverse Problems in Groundwater Modeling[M]. Kluwer: Academic Publishers,1994.
[2]Liu J. A sensitivity analysis for leastsquares ill-posed problems using the Haar basis[J]. SIAM Journal of Numerical Analysis,1994,31 (5):1 486-1 496.
[3]Sun N Z, Yang S L, Yeh W W G. A proposed stepwise regression method for model structure identification[J]. Water Resource Research, 1998,34(10):2 561-2 572.
[4]Coppola, Szidarovszky E F, Poulton M,et al.Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions[J]. Journal of Hydrological Engineering, 2003,8(6): 348-360.
[5]Morshed J, Kaluarachchi J J. Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery[J]. Water Resource Research, 1998,34(5): 1 101-1 113.
[6]Knabner P,Igler B. Structural Identification of conlinear coefficient functions in transport processes through porous media[A]. In:Bungartz H J, Hoppe R H W, Zenger C, eds. Lectures on Applied Mathematics[C]. Springer-Verlag, 2000.
[7]Sun N Z, Yeh W W G. Identification of parameter structure in groundwater inverse problems[J]. Water Resource Research, 1985,21(6): 869-883.
[8]Heredia J, Medina A, Carrera J. Estimation of parameter geometry[A]. In: Crolet J M ed.Computational Methods for Flow and Transport in Porous Media[M]. Kluwer: Academic Publishers, 2000.
[9]Hu L Y. Gradual deformation and iterative calibration of Gaussianrelated stochastic models[J]. Mathematics Geology,2000,32(1):87-108.
[10]Ameur H G, Chavent Jaffre J. Refinement and coarsening indicators for adaptive parameterization: Application to the estimation of hydraulic transmissivities[J]. Inverse Problems,2002, 18:775-794.
[11]Tsai F T C, Sun N Z, Yeh W W G. Global-local optimization for parameter structure identification in three-dimensional groundwater modeling[J]. Water Resource Research, 2003,39 (2):1043.
[12]Sun N Z, Tsai F, Yeh W W G. Parameter structure identifiability and experimental design in groundwater modeling[A]. In: The Proceedings of 4th International Conference on Inverse Problems in Engineering[C]. Brazil, May 26-31, 2002.
[13]Atmajia J, Bagtzoglou A C. State of the art report on mathematical methods for groundwater pollution source identification[J]. Environmental Forensics,2002,2: 205-214.
[14]Shenvi N, Geremia J N, Rabitz H. Nonlinear kinetic parameter identification through map inversion[J]. Journal of Physical Chemistry(A), 2002,106 (51): 12 315-12 323.
[15]Sun N Z, Sun A Y. Parameter identification of environmental systems[A].Shen H H, et al,eds. Chapter 9 in Environmental Fluid Mechanics: Theories and Applications[C]. Reston. VA, ASCE, 2002,297-337.
[16]Mayer A S, Kelly C T, Miller C T. Optimal design for problems involving flow and transport phenomena in subsurface systems[J]. Advance in Water Resource,2002, 25(8~12): 1 233-1 256.
[17]Zheng C, Wang P, Parameter structure identification using tabu search and simulated annealing[J]. Advances in Water Resources,1996,19 (4):215-224.
[18]Gaganis P, Smith L. A Bayesian approach to quantification of the effect of model error on the predictions of groundwater models[J]. Water Resource Research, 2001,37 (9):2 309-2 322.
/
〈 |
|
〉 |