Articles

Pyrite Framboids and Palaeo ocean Redox Condition Reconstruction

Expand
  • 1. School of Life and Geography Sciences, Qinghai Normal University, Xining810008, China; 2. Key Laboratory of Tibetan Plateau Environment and Resources (Ministry of Education), Xining810008, China; 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China

Received date: 2010-09-01

  Revised date: 2010-11-02

  Online published: 2011-05-10

Abstract

Framboidal pyrites are denselypacked, raspberrylike, spherical aggregates of equigranular, micronsized crystals or microcrysts. Because of the difference principle in framboidal pyrites formation between oxic and euxinic depositional conditions, size distribution of framboids is indicative of oxygen levels for palaeo-ocean water column. However, only oxic and euxinic conditions can be definitely distinguished but suboxic or ferruginous conditions (anoxic and containing dissolved Fe2+) using the framboidal pyrites, and framboids formed in ferruginous condition may indicate euxinic environment. Therefore, incompatible results for deepwater redox conditions of the terminal Ediacaran Nanhua Basin have been achieved using framboidal pyrites size statistics and other available methods, respectively. We consider that the euxinic deepwater condition implied by framboids was incorrect, and the small pyrites may be formed due to limited sulfate concentrations in the basin and accordingly little H2S supply. In order to get credible results, other proxies, such as iron species, redox sensitive trace elements and stable isotope methods should be applied simultaneously when using framboidal pyrites to reconstruct palaeoocean environments.

Cite this article

Chang Huajin, Chu Xuelei . Pyrite Framboids and Palaeo ocean Redox Condition Reconstruction[J]. Advances in Earth Science, 2011 , 26(5) : 475 -481 . DOI: 10.11867/j.issn.1001-8166.2011.05.0475

References

[1]Canfield D E. A new model for Proterozoic Ocean chemistry[J]. Nature, 1998, 396(6 710): 450-453.    
[2]Canfield D E, Poulton S W, Narbonne G M. LateNeoproterozoic deepocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5 808): 92-95.
[3]Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444(7 120): 744-747.
[4]Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science, 2002, 297(5 584): 1 137-1 142.
[5]Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the CenomanianTuronian boundary event (Cretaceous) in the UmbriaMarche Basin of central Italy[J]. Chemical Geology, 2006, 234(3/4): 321-339.
[6]Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deepsea circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(1/3): 65-85.
[7]Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Their decrease, subsequent warming, and recovery[J]. Paleoceanography,1999, 14(4): 511-524.
[8]Isozaki Y. Permotriassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276(5 310): 235-238.
[9]Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates FrasnianFamennian boundary mass extinction horizon in the Great Basin, USA
[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 275-292.
[10]Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[11]Chang Huajin, Chu Xuelei, Feng Lianjun, et al.Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.[常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.]
[12]Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottomwater oxygenation[J]. Journal of Sedimentary Petrology,1988, 58(5): 812-819.
[13]Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
[14]Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in midProterozoic oceans[J]. Science, 2004, 304(5 667):87-90.
[15]Wille M, Nagler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J].Nature, 2008, 453(7 196): 767-769.
[16]Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3 897-3 912.
[17]Zhou C, Jiang S Y. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in south China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4): 279-286.
[18]Love L G, Amstutz G C. Review of microscopic pyrite from the Devonian Chattan ooga Shale and Rammelsberg Banderz[J]. Fortschrift Mineralogie,1966, 43: 273-309.
[19]Rickard D T. The origin of framboids[J]. Lithos, 1970, 3(3): 269-293.
[20]Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179.
[21]Canfield D E, Thamdrup B. The production of 34S depleted sulfide during bacterial disproportiontion of elemental sulfur[J]. Science, 1994, 266(5 193): 1 973-1975.
[22]Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1 244-1 263.
[23]Fisher I S J, Hudson J D. Pyrite formation in Jurassic shales of contrasting biofacies[J]. Geological Society London Special Publications, 1987, 26(1): 69-78.
[24]Yan D, Chen D, Wang Q, et al. Carbon and sulfur isotopic anomalies across the Ordovician Silurian boundary on the Yangtze Platform, South China
[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1/2): 32-39.
[25]Wilkin R T, Arthur M A, Dean W E. History of watercolumn anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525.
[26]Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygenpoor deposition during the PermianTriassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188.
[27]Lüning S, Kolonic S, Loydell D K, et al. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya)[J]. GeoArabia, 2003, 8: 299-308.
[28]Passier H F, Middelburg J J, deLange G J, et al. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel[J]. Geology, 1997, 25(6): 519-522.
[29]Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552.
[30]Hofmann P, Ricken W, Schwark L, et al. Carbonsulfuriron relationships and δ13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: Paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163 (3/4): 97-113.
[31]Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1 399-1 416.
[32]Nielsen J K, Shen Y. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin[J]. Geology, 2004, 32(12): 1 037-1 040.
[33]Chen X, Li D, Ling H F, et al. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment[J]. Progress in Natural Science,2008,18(4): 421-429.
[34]Algeo T J, Shen Y A, Zhang T G, et al. Association of 34Sdepleted pyrite layers with negative carbonate δ13C excursions at the PermianTriassic boundary: Evidence for upwelling of sulfidic deepocean water masses[J]. Geochemistry Geophysics Geosystems,2008, 9: doi: 10.1029/2007GC001823.
[35]de Koff J P, Anderson M A, Amrhein C. Geochemistry of iron in the Salton Sea, California[J]. Hydrobiologia, 2008, 604: 111-121.
[36]Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deepwater shalegas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[37]Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallowmarine carbonates and implications for PermianTriassic boundary events[J]. Geological Society of America Bulletin,2007,119(7/8):771-784.
[38]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 25(4): 1 001-1 007.[常华进, 储雪蕾, 冯连君, 等. 华南老堡组硅质岩中草莓状黄铁矿——埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009, 25(4): 1 001-1 007.]
[39]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. The major and REE geochemistry of the Silikou chert in northern Guangxi province[J]. Acta Sedimentologica Sinica,2010, 28(6): 1 098-1 107.[常华进, 储雪蕾, 冯连君, 等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报, 2010, 28(6): 1 098-1 107.]
[40]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deepwater conditions[J]. Chinese Science Bulletin, 2010, 55(27/28):3 189-3 196.[常华进, 储雪蕾, 冯连君,等. 桂北老堡组硅岩中的铁组分——指示缺氧含铁的盆地深水古环境[J]. 科学通报, 2010, 55(20): 2 010-2 017.]
[41]Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deepwater chemistry[J]. Science, 2008, 321(5 891):949-952.
[42]Chang H J, Chu X L, Feng L J, et al. Terminal Ediacaran anoxia in deepocean: Trace element evidence from cherts in the Liuchapo Formation, south China[J]. Science in China (Series D), 2009, 52(6): 807-822.
[43]Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5 974): 80-83.
[44]Shen Y, Zhang T G, Chu X L. Cisotopic stratification in a Neoproterozoic postglacial ocean[J]. Precambrian Research, 2005, 137(3/4): 243-251.
[45]Jiang G Q, Kaufman A J, ChristieBlick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surfacetodeep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.
[46]McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3 197-3 202.
[47]Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society London Special Publications, 1991, 58(1): 1-26.

Outlines

/