Articles

ADVANCES IN APPLICATION OF REMOTE SENSING TECHNOLOGY TO LAND SURFACE PROCESSES RESEARCH

Expand
  • 1.Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou730000,China;
    2.The Scientific Information Center for Resources&Environment,CAS,Lanzhou730000,China

Received date: 2000-06-23

  Revised date: 2000-12-26

  Online published: 2001-06-01

Abstract

At the present time remote sensing technology, because of its prominent advantages, is playing an important role in land surface processes (LSP)research. Main characteristics of land surface processes research can be summarized as follow: (1)more and more meteorologists pay attention to LSP research;(2)international cooperative research on LSP become very active;(3)interdisciplinary cooperative research between different research fields is being improved to LSP research;(4)remote sensing technology becomes one of necessary tools in LSP research. With the development of remote sensing technology, more and more land surface parameters such as albedo, emissivity, land surface temperature(LST) and soil moisture etc. can be retrieved from satellite remotely sensed data, and the retrieval precise of the parameters become better and better. Optical remote sensing (including visible, near infrared and thermal infrared remote sensing) prove to be effective in retrieving the parameters such as albedo, LST and emissivity, and a lot of retrieval algorithms have been developed. For example, LST, an important land surface parameter, can be estimated well by means of split window algorithms from NOAA/AVHRR data. In contrast to optical remote sensing, microwave remote sensing (both active and passive) has great advantages in retrieving soil moisture. By using the relation between σ0,backscattering coefficient and, soil moisture or the relation between T B, brightness temperature of radiometer and soil moisture, we can estimate the value of soil moisture from microwave remotely sensed data. The capacity of the microwave sensors to penetrate non raining clouds makes them very attractive for use as soil moisture sensors. After reviewing the various algorithms of remote sensing to retrieve land surface parameters and calculate surface energy fluxes and combination of remote sensing with land surface processes models, we concluded that:(1) it is known to all to choose optical or microwave remote sensing according to the feature of the parameter;(2) it becomes a focus that one parameter is derived by various kinds of remote sensing data;(3) studing on combination of remote sensing with LSP models will be improved by the international land surface processes experiments.

Cite this article

GAO Feng,WANG Jie-min,SUN Cheng-quan,MA Yao-ming . ADVANCES IN APPLICATION OF REMOTE SENSING TECHNOLOGY TO LAND SURFACE PROCESSES RESEARCH[J]. Advances in Earth Science, 2001 , 16(3) : 359 -366 . DOI: 10.11867/j.issn.1001-8166.2001.03.0359

References

[1]  Wang Jiemin. Land surface process experiment and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX [J]. Plateau Meteorology ,1999,18(3):280-294.[王介民.陆面过程实验和地气相互作用——从HEIFI到IM-GRASS和GAME—Tibet/TIPEX[J].高原气象, 1999, 18(3):280-294.]
[2]  Sellers P J,Hall F G,Asrar G,et al. An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment(FIFE)[J]. J G R, 1992, 97(D17):18 345-18 371.
[3]  Hu Yinqiao, Gao Youxi. Some new understandings of processes at the land surface in arid area from the HEIFE[J]. Acta Meteorologica Sinica, 1994, 52(3): 285-296.[胡隐樵,高由禧.黑河实验(HEIFE)——对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.]
[4]  Niu Guoyao, Hong Zhongxiang, Sun Shufen. Status and developmental trend of land surface processes study[J]. Advances in Earth Sciences, 1997, 12(2): 20~25.[牛国跃,洪钟祥,孙淑芬.陆面过程研究的现状与发展趋势[J].地球科学进展,1997,12(2):20-25.]
[5]  Schmugge T,Hook S J,Coll C. Recovering surface temperature and emissivity from thermal infrared multispectral data[J]. R S Environ, 1998, 65:121-131.
[6]  Pinty B, Ramond D. Amethod for the estimate of broadband directional surface albedo from a geostationary satellite[J].Journal of Climate and Applied Meteorology, 1987, 26: 1709-1 722.
[7]  Nunez M, Skirving W J,Viney N R. A technique for estimating regional surface albedo using geostationary satellite data[J]. Joural of Climatology, 1987, 7: 1-11.
[8]  Brest C J, Goward S N. Deriving surface albedo from narrow band satellite data[J]. Int J R S, 1987,8:351-367.
[9]  Saunders R W. The determinination of broad band surface albedo from AVHRR visible near-infrared radiances[J]. Int J R S,1990,11:49-67.
[10]  Wu Aisheng, Zhong Qiang. Second variation of surface albedo and vegetation index over Heihe experiment area [J].Plateau Meteorology, 1992, 11(4): 155-162.[吴艾笙,钟强.黑河地区地表反射率与植被指数的季节变化[J].高原气象,1992,11(4):155-162.]
[11]  Wang Jiemin, Ma Yaoming. The study of processes in the heterogeneous landscape of HEIHE with the aid of satellite remotesensing[J]. Remote Sensing Technology and Application, 1995, 10(3): 19-26.[王介民,马耀明.卫星遥感在非均匀陆面过程研究中的应用[J].遥感技术与应用,1995,10(3):19-26.]
[12]  Price J C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer[J]. J G R, 1984, 89: 7 231-7 237.
[13]  Prata A J, Platt C M R.Land surface temperature measurements from the AVHRR[A]. In: Proceedings of the 5th AVHRR Data Users Meeting, Tromso, Norway [ C ].1991.433-438.
[14]  Ulivri C, Castronwvo M M,Frandoni R,et al.Asplit-window algorithm for estimating land surface temperature from satellites[A]. In: COSPAR[C]. 27 Aug-5 Sep,WashingtonD C,1992.
[15]  Vazquez D P, Olmo Reyes F J, Arbdedas L A. A comparatuve study of algorithms for estimating land surface temperature from AVHRR data[J]. R S Environ, 1997,62:215-222.
[16]  Schmugge T, Hook S J, Coll C. Recovery surface temperature and emissivity from thermal infrared multispectral data[J]. R S Environ, 1998,65:121-131.
[17]  Coll C, Casellos V A. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data:Validation and algorithm comparision[J].J G R,1997,102(D14):16 697-16 713.
[18]  Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface[J]. Int J R S, 1993,14(6): 1 119-1 131.
[19]  Liu Dongqi, Wang Jiemin. Estimation of the angular variation of the land surface emissivity in heterogeneous areas with the ATSR/ERS-1 data[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 613-622.[刘东琦,王介民.利用ATSR/ERS-1资料研究复杂下垫面比辐射率的变化[J].大气科学,1999,23(5):613-622.]
[20]  Fassnacht K S, Goower S T, Mackenzie M O,et al. Estimating the Leaf Aera Index of North Central Wisconsin forests using the Landsat Thematic Mapper[J]. R S Environ, 1997,61:229-245.
[21]  Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990,28:940-948
[22]  Jia Li, Wang Jiemin. The area distribution and seasonal variation of NDVI over Heihe area[J]. Plateau Meteorology,1999, 18(2): 245~249.[贾立,王介民.黑河实验区地表植被指数的区域分布及季节变化[J].高原气象,1999,18(2):245-249.]
[23]  Nieuwenhuis G J A, Amid E H, Thunnissen H A M. Estimation of regional ET of arable crops from thermal infrared images[J]. Int J R S, 1985, 6: 1 319-1 334.
[24]  Vidal A, Perrier A. Analysis of a simplified relation for estimating daily evapotranspiration from satellite thermal IR data[J]. Int J R S, 1990, 11: 1 327-1 337.
[25]  Casselles V, Artigao M M,Hurtado E,et al. Mapping actual evapotranspiration by combining Landsat TM and NOAA-AVHRR images: Application to the Barrax area, Albacete,Spain[J]. R S Environ, 1998,63:1-10.
[26]  Moran M S,Clarke T H, Inone Y,et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. R S Environ, 1994, 49:246-263.
[27]  Jia Li, Wang Jiemin, Menenti M. Estimation of area roughness length for momentum using remote sensing data and measurement in field[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 632-640.[贾立,王介民,Menenti M.卫星遥感结合地面资料对区域表面动量粗糙度的估算[J].大气科学,1999,23(5):632-640.]
[28]  Zhang Junrong, Wang Liwei, Zhang Dehai. The microwave dielectric constant of canopy and soil[J]. Remote Sensing Technology and Application,1995, 10(3): 40-50.[张俊荣,王丽巍,张德海.植被和土壤的微波介电常数[J].遥感技术与应用,1995,10(3):40-50.]
[29]  Chanzy A. Basic soil surface characteristics derived from active microwave remote sensing[J]. Remote Sensing Review,1993,7:303-320.
[30]  Li Xingchao. A study on soil moisture monitoring by using microwave remote sensing[J]. Remote Sensing Technology and Application, 1995, 10(4): 1-8.[李杏朝.微波遥感监测土壤水分的研究初探[J].遥感技术与应用,1995,10(4):1-8.]
[31]  Sano E E, Moran M S, Huete A R,et al. C-and Multiangle Ku-band SAR data for bare soil moisture estimation in agricu ltural areas[J]. R S Environ, 1998, 64:77-90.
[32]  Rao K S,Raju S,Wang J R.Estimation of soil moisture and surface roughness parameters from backscatter coefficients[J]. IEEE Trans Geosci Remote Sensing, 1993, 31 (5):1 094-1 099.
[33]  Narayanan R M, Homer J R, St Germain K M. Simulation study of a robust algorithm for soil moisture and surface roughness estimation using L-Band radar backscatter [J].Geocarto International, 1999,14(1):5-13.
[34]  Schmugge T J,Gloersen P, Wilheit T.et al. Remote sensing of soil moisture with microwave radiometers[J]. J G R,1974, 79(2):317-323.
[35]  O' Neill P E.Microwave remote sensing of soil moisture: A comparison of results from different truck and aircraft platforms[J]. Int J Remote Sensing, 1985, 6(7):1 125-1 134.
[36]  Schmugge T J, O' Neill N T, Wang J R. Passive microwave soil moisture research[J]. IEEE Trans Geosci Remote Sensing, 1986, GE-24(1):12-20.
[37]  Choudhury B J, Schmugge T J,Newton R W,et al. Effect of surface roughness on the microwave emission from soils[J].J G R, 1979, 84. 5 699-5 706.
[38]  Wang J R. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometer[J]. R S Environ,1985, 17:141-151.
[39]  Teng W L, Wang J R, Doraiswamy P C. Relationship between satellite microwave radiometric data, antecedent precipitation index ,and regional soil moisture[J]. Int J R S,1993, 14(13):2 483-2 500.
[40]  Koike T. Study on spatial and temporal variability of surface wetness on the Tibetan Plateau by using the satellite-based microwave radiometer[J]. Annual J Hydraulic Eng,1997,41:915-919.
[41]  Jackson T J. Soil moisture at regional scales using microwave radiometry: the southern Great Plains Hydrology Experiment[J]. IEEE Trans Geosci Remote Sensing, 1999, 37 (5):2 136-2 151.
[42]  McFarland M J, Miller R L, Neale C M U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures [J]. IEEE Trans Geosci Remote Sensing, 1990,28(5): 839-845.
[43]  Choudhury B J, Tucker C J. Monitoring global vegetation using Nimbus-7 37GHz data: some empirical relations[J].Int J R S, 1987, 8(7): 1 085-1 090.
[44]  Felde G W. The effect of soil moisture on the 37GHz microwave polarization difference index(MPDI)[J]. Int J R S,1998, 19(6):1 055-1 078.
[45]  Kustas W P,Daughtry C S T,Van Oevelen P J. Analytical treatment of the relationship between soil heatflux/net rediation ratio and vegetation indices[J].R S Environ,1993,46:319-330.
[46]  Ma Yaoming, Wang Jiemin, Menenti M,et al. The distribution and seasonal variation of regional net radiation in HEIFE area[J]. Chinese Journal of Atmospheric Sciences, 21(6):743-749.[马耀明,王介民,Menenti M等.黑河实验区地表净辐射区域分布及季节变化[J].大气科学,1997,21(6):743-749.]
[47]  Kustas W P, Zhan X, Schmugge T J. Combining optional and microwave remote sensing for mapping energy fluxes in a semiarid watershed[J]. R S Environ, 1998,64: 116-131.
[48]  Kaneko D,Hino M. Proposal and investigation of a method or estimating surface energy balance in regional forests using TM derived vegetation index and observatory routine data[J]. Int J R S, 1996, 17(6): 1 129-1 148.
[49]  Jackson T J. Soil water modeling and remote sensing[J].IEEE Trans Geosci Remote Sensing, 1986, 24(1):37-46.
[50]  Bernard R, Vaudlin M,Vidal-Madjar D. Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone[J].Water Resource Research,1981,17(6):1 603-1 610.
[51]  England A W. Radiobrightness of diurnally heated, freezing soil[J]. IEEE Trans Geosci Remote Sensing, 1990, 28: 464-476.
[52]  Liou Y A, England A W. Annual temperature and radiobrightness signature for bare soil[J]. IEEE Trans Geosci Remote Sensing, 1996,34(4): 981-990.
[53]  Liou Y A, England A W. A land surface process/radio-brightness model with coupled heat and moisture transport in soil[J]. IEEE Trans Geosci Remote Sensing, 1998,36(1): 273-285.
[54]  Liou Y A, England A W. A land surface process/radio-brightness model with coupled heat and moisture transport for freezing soils[J]. IEEE Trans Geosci Remote Sensing,1998,36(2): 669-330.
[55]  Liou Y A, Galantowicz J F, England A W. A land surface process/radiobrightness model with coupled heat and moisture transport for Prairie grassland[J]. IEEE Trans Geosci Remote Sensing, 1999,37(4):1 305-1 312.

Options
Outlines

/