Received date: 2008-12-08
Revised date: 2009-03-19
Online published: 2009-05-10
Urban surface is one of the most important land cover types in the land surface ecosystem. Investigations on thermal radiation features of urban surfaces are helpful for researches about energy balance in urban environments and urban heat islands (UHIs). Thermal anisotropy in urban areas is more significant than that of natural surfaces. However, related researches have been slowed down. In recent years, observations onboard air-crafts and ground platforms have revealed that thermal anisotropy in urban area is related to the geometric conditions of sun-ground targets-sensor, the configurations and physical features of urban areas. In addition, models for describing the radiative temperature patterns, geometric relationships and radiative transfer schemes in urban areas have been proposed by literatures. In this study, the progresses of researches about thermal anisotropy in urban areas have been reviewed from several aspects, including experiments, modeling and the relationships between thermal anisotropy and surface UHI. It is also pointed out that the issues remain further investigation.
Key words: Thermal anisotropy; Surface urban heat island; Remote sensing; Urban area
Li Jing , Zhou Ji , Chen Yungao , Ma Wei , Zhan Wenfeng . Progress in Thermal Anisotropy of Urban areas: A Review[J]. Advances in Earth Science, 2009 , 24(5) : 497 -505 . DOI: 10.11867/j.issn.1001-8166.2009.05.0497
[1] Monteith J, Szeicz G. Radiative temperature in the heat balance of natural surfaces[J].The Quarterly Journal of the Royal Meteorological Society,1962,88(378):496-507.
[2] Paw U K. Development of models for thermal infrared radiation above and within plant canopies[J].ISPRS Journal of Photogrammetry and Remote Sensing,1992,47:189-203.
[3] Rao P. Remote sensing of urban heat islands from an environmental satellite[J].Bulletin of American Meteorology Society,1972,53(7): 647-648.
[4] Voogt J, Oke T. Thermal remote sensing of urban climates[J].Remote Sensing of Environment,2003, 86: 370-384.
[5] Voogt J, Oke T. Effects of urban surface geometry on remotely-sensed surface temperature[J].International Journal of Remote Sensing,1998, 19(5): 895-920.
[6] Lagouarde J, Moreau P, Irvine M, et al. Airborne experimental measurements of the angular variations in surface temperature over urban areas: Case study of Marseille (France)[J].Remote Sensing of Environment,2004, 93: 443-462.
[7] Lagouarde J, Irvine M. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: First results[J].Meteorology and Atmospheric Physics, 2008, 102(3/4):173-185.
[8] Soux A, Voogt J, Oke T. A Model to calculate what a remote sensor sees′ of an urban surface[J].Boundary-Layer Meteorology, 2004, 111: 109-132.
[9] Ma Wei. A Computer Model for Simulating the Directional Thermal Radiance of Urban Targets[D]. Beijing: Beijing Normal University, 2009.[马伟. 城市目标热辐射方向性计算机模型研究[D]. 北京: 北京师范大学, 2009.]
[10] Norman J,Becker F. Terminology in thermal infrared remote sensing of natural surfaces[J].Agricultural and Forest Meteorology,1995, 77: 153-166.
[11] Liang S.Quantitative Remote Sensing of Land Surfaces[M]. New Jersey: John Wiley & Sons Inc, 2004: 15.
[12] Kimes D.Effects of vegetation canopy structure on remotely sensed canopy temperatures[J].Remote Sensing of Environment,1980, 10: 165-174.
[13] Kimes D, Idso S, Pinter P, et al. View angle effects in the radiometric measurement of plant canopy temperatures[J].Remote Sensing of Environment,1980, 10: 273-284.
[14] Kimes D, Kirchner J. Directional radiometric measurements of row-crop temperatures[J].International Journal of Remote Sensing, 1983, 4(2): 299-311.
[15] PawU K, Ustin S, Zhang C. Anistropy of thermal infrared exitance in sunflower canopies[J].Agricultural and Forest Meteorology, 1989, 48: 45-58.
[16] Lagouarde J, Kerr Y, Brunet Y. An experimental study of angular effects on surface temperature for various plant canopies and bare soils[J].Agricultural and Forest Meteorology,1995, 77: 167-190.
[17] Verbrugghe M, Cierniewski J. Influence and modeling of view angles and microrelief on surface temperature measurements of bare agricultural soils[J].ISPRS Journal of Photogrammetry & Remote Sensing, 1998, 53: 166-173.
[18] Lagouarde J, Ballans H, Moreau P, et al. Experimental study of brightness surface temperature angular variations of maritime pine (pinus pinaster) stands[J].Remote Sensing of Environment, 2000, 72: 17-34.
[19] Chehbouni A, Nouvellon Y, Kerr Y, et al. Directional effect on radiative surface temperature measurements over a semiarid grassland site[J].Remote Sensing of Environment, 2001, 76: 360-372.
[20] Li Z, Zhang R, Sun X, et al. Experimental system for the study of the directional thermal emission of natural surfaces[J].International Journal of Remote Sensing, 2004, 25(1): 195-204.
[21] Yu Tao, Gu Xingfa, Tian Guoliang,et al. Analyzing the errors caused by FOV effect on the ground observations of directional brightness temperature over a row structured canopy[J].Journal of Remote Sensing, 2004, 8(5): 443-450.[余涛, 顾行发, 田国良, 等.垄行作物玉米方向亮温野外测量中视场角影响的简单分析[J]. 遥感学报, 2004, 8(5): 443-450.]
[22] Yu Tao, Gu Xingfa, Tian Guoliang, et al. Modeling directional brightness temperature over a maize canopy in row structure[J].Journal of Remote Sensing,2006,10(1): 15-20.[余涛,顾行发,田国良,等.垄行结构玉米冠层方向亮温模型研究[J]. 遥感学报, 2006, 10(1): 15-20.]
[23] Yu Tao, Gu Xingfa, Tian Guoliang, et al. Comparison of four measurement methods for acquiring maize hemispherical directional brightness temperature with a cane based thermal camera system[J].Journal of Remote Sensing,2006, 10(2): 145-150.[余涛,顾行发, 田国良,等.采用热像仪测量玉米冠层半球方向亮温的四种方法比较[J]. 遥感学报, 2006, 10(2): 145-150.]
[24] Minnis P, Khaiyer M. Anisotropy of land surface skin temperature derived from satellite data[J].Journal of Applied Meteorology,2000, 39: 1 117-1 129.
[25] Lipton A, Ward J. Satellite-view biases in retrieved surface temperatures in mountain areas[J].Remote Sensing of Environment,1997, 60: 92-100.
[26] Iino A, Hoyano A. Development of a method to predict the heat island potential using remote sensing and GIS data[J].Energy and Buildings,1996, 23: 199-205.
[27] Yu Tao,Tian Qiyan, Gu Xingfa, et al. Modeling directional brightness temperature over a simple typical structure of urban areas[J].Journal of Remote Sensing, 2006, 10(5): 661-669.[余涛,田启燕,顾行发,等.城市简单目标方向亮温研究[J]. 遥感学报, 2006, 10(5): 661-669.]
[28] Sugawara H, Takamura T. Longwave radiation flux from an urban canopy:Evaluation via measurements of directional radiometric temperature[J].Remote Sensing of Environment,2006, 104: 226-237.
[29] Voogt J, Soux A. Methods for the assessment of representative urban surface temperatures[C]//Third Symposium on the Urban Environment. Davis, CA: American Meteorological Society,2006.
[30] Voogt J, Oke T. Complete urban surface temperatures[J].Journal of Applied Meteorology,1997, 36: 1 117-1 132.
[31] Voogt J. Image representations of complete urban surface temperatures[J].Geocarto International,2000, 15(3): 19-29.
[32] Kanda M. Progress in the scale modeling of urban climate: Review[J].Theoretical and Applied Climatology, 2006, 84: 23-34.
[33] Kanda M. Progress in urban meteorology: A review[J].Journal of the Meteorological Society of Japan,2007, 85B: 363-383.
[34] Nichol J. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-base study[J].Journal of Applied Meteorology,1996, 35: 135-146.
[35] Nichol J. Visualisation of urban surface temperatures derived from satellite images[J].International Journal of Remote Sensing,1998, 19(9): 1 639-1 649.
[36] Sobrino J, Caselles V. Thermal infrared radiance model for interpreting the directional radiometric temperature of a vegetative surface[J].Remote Sensing of Environment,1990, 33(3): 193-199.
[37] Voogt J. Assessment of an urban sensor view model for thermal anisotropy[J].Remote Sensing of Environment,2008, 112: 482-495.
[38] Johnson G, Oke T, Lyons T, et al. Simulation of surface urban heat islands under ideal′ conditions at night part 1: Theory and tests against field data[J].Boundary-Layer Meteorology,1991, 56(3): 275-294.
[39] Oke T, Johnson G, Steyn D, et al. Simulation of surface urban heat islands under ideal′ conditions at night part 2: Diagnosis of causation[J].Boundary-Layer Meteorology,1991, 56(4): 339-358.
[40] Fontanilles G, Briottet X, Fabre S, et al. TITAN:An infrared radiative transfer model for heterogeneous 3-D surface-application over urban areas[J].Applied Optics,2008, 47(31):5 799-5 810.
[41] Huang Huaguo, Xin Xiaozhou, Liu Qinhuo, et al. Using CUPID to simulate wheat canopy component temperatures distribution:Sensitivity analysis and evaluation[J].Journal of Remote Sensing,2007,11(1):94-102.[黄华国,辛晓洲,柳钦火,等.用CUPID模型模拟小麦组分温度分布:敏感性分析与验证[J]. 遥感学报,2007,11(1): 94-102.]
[42] Huang Huaguo,Liu Qinhuo, Liu Qiang, et al. Simulation of time effect on thermal emission directionality measurement[J].Journal of System Simulation,2007,19(15):3 586-3 590.[黄华国,柳钦火,刘强,等.热辐射方向性测量中的时间效应模拟[J]. 系统仿真学报,2007,19(15):3 586-3 590.]
[43] Mills G. An urban canopy-layer climate model[J].Theoretical and Applied Climatology,1997, 57: 229-244.
[44] Krayenhoff E, Voogt J. A microscale three-dimensional urban energy balance model for studying surface temperatures[J].Boundary-Layer Meteorology,2007,123:433-461.
[45] Voogt J A,Krayenhoff. Modelling urban thermal anisotropy[C]//5th International Symposium on Remote Sensing of Urban Areas (URS 2005), 14-16 March,Phoenix,2005.
[46] Roth M, Oke T, Emery W. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology[J].International Journal of Remote Sensing,1989,10(11):1 699-1 720.
[47] Lo C, Quattrochi D, Luvall J. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect[J].International Journal of Remote Sensing,1997,18(2):287-304.
[48] Ben-Dor E, Saaroni H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island[J].International Journal of Remote Sensing,1997,18(14):3 039-3 053.
[49] Quattrochi D, Ridd M. Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data[J].Atmospheric Environment,1998,32(1):19-33.
[50] Goldreich Y. Ground and top of canopy layer urban heat island partitioning on an airborne image[J].Remote Sensing of Environment,2006,104:247-255.
[51] Streutker D. A remote sensing study of the urban heat island of Houston, Texas[J].International Journal of Remote Sensing,2002,23(13): 2 595-2 608.
[52] Streutker D. Satellite-measured growth of the urban heat island of Houston, Texas[J].Remote Sensing of Environment,2003,85:282-289.
[53] Huang T, Uchihama D, Ochi S, et al. Assessment with satellite data of the urban heat island effects in Asian mega cities[J].International Journal of Applied Earth Observation and Geoinformation,2006, 8: 34-48.
[54] Zhou Ji, Chen Yunhao, Li Jing, et al. A volume model for urban heat island based on remote sensing imagery and its application: A case study in Beijing[J].Journal of Remote Sensing,2008, 12(5): 734-742.[周纪,陈云浩,李京,等.基于遥感影像的城市热岛容量模型及其应用——以北京地区为例[J]. 遥感学报, 2008, 12(5): 734-742.][55] Wang K, Wang J, Wang P, et al. Influences of urbanization on surface characteristics as derived from the Moderate-Resolution Imaging Spectroradiometer: A case study for the Beijing metropolitan area[J].Journal of Geophysical Research,2007, 112,D22S06, doi: 10.1029/2006JD007997.
/
〈 |
|
〉 |