Advances in the Study of Researching Biogenic Volatile Organic Compounds Emissions
Received date: 2008-01-09
Revised date: 2008-05-21
Online published: 2008-08-10
Biogenic volatile organic compounds (BVOCs), as trace gases, are always involved into a variety of chemical reactions in the atmosphere. Researches on BVOCs emission mechanism and the feedbacks between BVOCs and other atmospheric elements have been emphasized by recent global change studies. This paper summarizes the emission mechanism and of BVOCs emission, and summarized the advance in local observation and calculation methods of BVOCs emission; meanwhile updated simulation methods of BVOCs emission have been reported. At the same time, the shortage of this research and the trend of the research of BVOCs are discussed.
Key words: Biogenic volatile organic compounds; Emission; Model.
JIA Gensuo1 , SHI Mingjie , YAN Xiaodong . Advances in the Study of Researching Biogenic Volatile Organic Compounds Emissions[J]. Advances in Earth Science, 2008 , 23(8) : 866 -873 . DOI: 10.11867/j.issn.1001-8166.2008.08.0866
[1] Guenther A,Hewitt C N,Erickson D. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research,1995,100:8 873-8 892.
[2] Wang Z H,Bai Y H,Zhang S Y. A biogenic volatile organic compounds emission inventory for Beijing [J]. Atmospheric Environment,2003,37:3 771-3 782.
[3] Fehsenfeld F,Calvert J,Fall R,et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry [J]. Global Biogeochemical Cyclies,1992,6:389-430.
[4] Claeys M,Graham B,Vas G,et al. Formation of secondary organic aerosols through photooxidation of isoprene [J]. Science,2004,303: 1 173-1 176.
[5] Kavouras I G,Mihalopoulos N,Stephanou E G. Formation of atmospheric particles from organic acids produced by forests [J]. Nature,1998,395: 683-686.
[6] Andreaevc M O,Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry [J]. Science,1997,276: 1 052-1 058.
[7] Naik V,Delire C,Wuebbles D J. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2[J]. Journal of Geophys Research,2004,109(D06301),doi: 10.1029/2003JD004236.
[8] Wiedinmyer C,Friedfeld S,Baugh W,et al. Measurement and analysis of atmospheric concentration of isoprene and its reaction products in central Texas [J]. Atmospheric Environment,2001,35: 1 001-1 013.
[9] Wiedinmyer C,Guenther A,Estes M,et al. A land use database and examples of biogenic isoprene emissions estimates for the state of Texas,USA [J]. Atmospheric Environment,2001,35:6 465-6 477.
[10] Guenther A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems [J]. Chemosphere,2002,49:837-844.
[11] Yan Yan,Wang Zhihui,Bai Yuhua. Establishment of vegetation VOC emission inventory in China [J]. China Environment Science,2005,25(1):110-114.[闫雁,王志辉,白郁华,等.中国植被VOC排放清单的建立 [J]. 中国环境科学,2005,25(1):110-114.]
[12] Wang Zhiui,Bai Yuhua,Wang Xuesong,et al. Investigation of the mechanisms of soprene and monoterpene emissions from hevea brasiliensis in Xishuangbanna [J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2003,39(4):512-516. [王志辉,白郁华,王雪松,等.西双版纳地区三叶橡胶树异戊二烯和单萜烯排放机理初步研究 [J]. 北京大学学报:自然科学版,2003,39(4):512-516.]
[13] Jitlatta Tangpakdee,Yasuyuki Tanaka,Kyozo Ogura,et al. Isopentenyl diphosphate isomerase and prenyl tansferase activities in bottom fraction C-Serum from hevea Brasiliensis [J]. Phytochemistry,1999,45(2): 261-267.
[14] Wildermuth M C,Fall R. Light-dependent isoprene emission. Characterization of a thylakoid-bound isoprene snthase in Salix Discolor [J]. Plant Physiology,1996,112:171-182.
[15] Monson R,Lerdau M,Sharkey T,et al. Biological aspects of constructing biological hydrocarbon inventories [J]. Atmospheric Environment,1995,29:2 989-3 002.
[16] Guenther A,Karl T,Harley P,et al. Estimates of global terrestrial isoprene emissions using MEGAN(Model of Emissions of Gases and Aerosols from Nature)[J]. Atmospheric Chemistry and Physics,2006,6:3 181-3 210.
[17] Martin P H,Guenther A B. Insights into the dynamics of forest succession and non-methane hydrocarbon trace gas emissions [J]. Journal of Biogeography,1995,22: 493-499.
[18] Isidorov V. Organic Chemistry of the Earth's Atmosphere [M]. Berlin:Springer-Verlag,1990.
[19] Went F W. Blue hazes in the atmosphere [J]. Nature,1960,187(4 738): 641-643.
[20] Rasmussen R,Went F. Volatile organic material of plant origin in the atmosphere [J]. Proceedicgs of the Natlional Academy of Sciences of the United States of America,1965,53: 215-220.
[21] Sanadze G. The nature of gaseous substances emitted by leaves of Robinia pseudoacacia [J]. Soobshcheniya Akademi Nauk Gruzinskoj,SSR,1957,27: 747-750.
[22] Guenther A,Zimmerman P R,Wildermuth M. Natural volatile organic compound emission rate estimates for US woodland landscapes [J]. Atmospheric Environment,1994,28(6): 1 197-1 210.
[23] Wiedinmyer C,Guenther A,Harley P,et al. Global organic emissions from vegetation [C]∥Granier C,ed. Emissions of Atmospheric Trace Compounds.Dordrecht: Kluwer Publishing Co.,The Netherlands,2004.
[24] Guenther A,Greenberg J,Harley P,et al. Leaf,branch,stand and landscape scale measurements of volatile organic compound fluxes from US woodlands [J]. Tree Physiology,1996,16(1/2): 17-24.
[25] Greenberg J P,Guenther A,Zimmerman P,et al. Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer [J]. Atmospheric Environment,1999,33(6): 855-867.
[26] Guenther A,Monson R,Fall R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development [J]. Journal of Geophysical Research,1991,96:10 799-10 808.
[27] Guenther A B,Zimmerman P R,Harley P C,et al. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses [J]. Journal of Geophysical Research,1993,98(D7): 12 609-12 617.
[28] Geron C D,Guenther A B,Pierce T E. An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States [J]. Journal of Geophysical Research,1994,99(D6): 12 773-12 791.
[29] Guenther A,Baugh B,Brasseur G,et al. Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain [J]. Journal of Geophysical Research,1999,104(D23): 30 625-30 639.
[30] Harley P,Guenther A,Zimmerman P. Effect of light,temperature and canopy position on net photosynthesis and isoprene emission from leaves of sweet gum(Liquidambar styraciflua L.)[J]. Tree Physiology,1996,16: 25-32.
[31] Harley P,Guenther A,Zimmerman P. Environmental controls over isoprene emission from sun and shade leaves in a mature white oak canopy [J]. Tree Physiology,1997,17: 705-714.
[32] Sharkey T. Weather effects on isoprene emission capacity and applications in emission algorithms [J]. Ecological Applications,1999,9(4):1 132-1 137.
[33] Guenther A. Seasonal and spatial variations in natural volatile organic compound emissions [J]. Ecological Applications,1997,7: 34-45.
[34] Petron G,Harley P,Greenberg J,et al. Seasonal temperature variations influence isoprene emission [J]. Geophysical Research Letters,2001,28(9): 1 707-1 710.
[35] Monson R,Harley P,Litvak M,et al. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves [J]. Oecologia,1994,99:260-270.
[36] Sharkey T D,Singsaas E L,Lerdau M T,et al. Weather effects on isoprene emission capacity and applications in emissions algorithms [J]. Ecological Applications,2000,9: 1 132-1 137.
[37] Geron C,Guenther A,Sharkey T,et al. Temporal variability in basal isoprene emission factor [J]. Tree Physiology,2000,20(12): 799-805.
[38] Hanson D T,Sharkey T D. Rate of acclimation of the capacity for isoprene emission in response to light and temperature [J]. Plant,Cell & Environment,2001,24(9): 937-946.
[39] Rosenstiel T N,Potosnak M J,Griffin K L,et al. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem [J]. Nature,2003,421: 256-259.
[40] Velikova V,Pinelli P,Pasqualini S,et al. Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone [J]. New Phytologist,2005,166(2): 419-426.
[41] Levis S,Wiedinmyer C,Bonan G B,et al. Simulating biogenic volatile organic compound emissions in the community climate system model [J]. Journal of Geophysical Research-Atmospheres,2003,108(D21),4 659,doi: 10. 1029/2002JD003203.
[42] Pierce T E,Waldruff P S. Pc-Beis a personal-computer version of the biogenic emissions inventory system [J]. Journal of Air & Waste Management Assocation,1991,41(7):937-941.
[43] Pierce T,Geron C,Bender L,et al. Influence of increased isoprene emissions on regional ozone modeling [J]. Journal of Geophysical Research,1998,103(D19),25 611-25 629.
[44] Graedel T E,Bates T S,Bouwman A F,et al. A compilation of inventories of emissions to the atmosphere [J]. Global Biogeochemical Cycles,1993,7: 1-26.
[45] Olson J. World ecosystems(WE1.4): Digital raster data on a 10 minute geographic 1080 2160 grid [G]. Global ecosystems database,Version 1.0: Disc A,1992,NOAA National Geophysical Data Center,Boulder,CO.
[46] EDC-NESDID,Monthly Global Vegetation Index from Gallo bi-weekly experimental calibrated GVI(April 1985-December 1990). Digital raster data on a 10-minute geographic(lat/long) 1080 2160 grid [G]. Global Ecosystems Datbase Version 1.0. Disc A,1992,NOAA National Geophysical Data Center,Boulder,CO.
[47] Leemans R,Cramer W. IIASA database for mean monthly values of temperature,precipitation,and cloudiness on a global terrestrial grid: Digital raster data on a 30 minute geographic(lat/long) 320 times 720 grid [G]. Global Ecosystems Database Version 1.0: Disc A,1992,NOAA National Geophysical Data Center,Boulder,CO.
[48] Dickinson R E,Sellers A H,Kennedy P J,et al. Biosphere-Atmosphere Transfer Scheme(BATS) for the NCAR community climate model [R]. NCAR Technical Note,NCAR,TN275+STR,1986:69.
[49] Bonan G B. Land-atmospheric interactions for climate system models: Coupling biophysical,biogeochemical and ecosystem dynamical processes [J].Remote Sensing of Environment,1995,51: 57-73.
[50] Dai Y,Zeng X,Dickinson R E,et al. The common land model(CLM),technical documentation and user's guide [J]. Bulletin of the American Meterorological Society,2003,84: 1 013-1 023.
[51] Oleson K W,Dai Y,Bonan G,et al. Technical Description of the Community Land Model(CLM)[R]. NCAR Technical Note,NCAR,NCAR/TN-461+STR,2004.
[52] Ji J J. A climate-vegetation interaction model: Simulating physical and biological processes at the surface [J]. Journal of Biogeography,1995,22:445-451.
[53] Dickinson R E,Shaikh M,Graumlich L,et al. Interactive canopies for a climate model [J]. Journal of Climate,1998,11:2 823-2 836.
[54] Dickinson R E,Berry J A,Bonan G B,et al. Nitrogen controls on climate model evapotranspiration [J]. Journal of Climate,2002,15(3):278-295.
[55] Mao Jiafu. Researches on the improvement and application of Sheffield dynamic global vegetation model [D]. Beijing: Institute of Atmospheric Physics,Chinese Academy of Sciences,2007.[毛嘉富.Sheffield动态全球植被模型的改进及应用研究[D]. 北京: 中国科学院大气物理研究所,2007.]
[56] Du Chuanli,Liu Xiaodong. Introduction of Community Land Model 3.0[J]. Shaanxi Meteorology,2005,(6):13-14.[杜川利,刘晓东.公用陆面模式(Community Land Model 3.0)简介[J]. 陕西气象,2005,(6):13-14.]
[57] Foley J A,Prentice I C,Ramankutty N,et al. An integrated model of land surface processes terrestrial carbon balance and vegetation dynamics [J]. Global Biogeochemical Cycles,1996,10:603-628.
[58] Friend A D,Stivens A K,Knox R G,et al. A process-based,terrestrial biosphere model of ecosystem dynamics(Hybrid v3.0)[J]. Ecological Modeling,1997,95:247-287.
[59] Brovkin V,Ganopolski A,Svirezhev Y. A continuous climate-vegetation classification for use in climate-biosphere studies [J]. Ecological Modelling,1997,101:251-261.
[60] Woodward F I,Steffen W L. Natural Disturbances and Human Land Use in Dynamic Global Vegetation Models [R]. International Geosphere-Biosphere Programme Report 38. Sweden,1996.
[61] Sitch S,Smith B,Prentice I C,et al. Evaluation of ecosystem dynamics,plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model [J]. Global Change Biology,2003,9: 161-185.
[62] Cox P M,Betts R A,Jones C D,et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J]. Nature,2000,408: 184-187.
[63] Bonan G B,Levis S,Sitch S,et al. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics [J]. Global Change Biology,2003,9:1 543-1 566.
[64] Krinner G,Viovy N,Noblet Ducoudr N,et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system [J]. Global Biogeochemical Cyles,2005,19,GB1015,doi: 10.1029/2003GB002199.
[65] Ramankutty N,Foley J A. Estimating historical changes in global land cover: Croplands from 1700 to 1992 [J]. Global Biogeochemical Cycles,1999,13:997-1 027.
[66] Kucharik C J,Foley J A,Delire D,et al. Large-scale vegeatation feedback on a doubled CO2 climate [J]. Journal of Climate,2000,13:1 313-1 325.
[67] Zhang Ningning. Simulating succession dynamics of Far East Boreal forests under climate changing scenarios [D]. Beijing: Institute of Atmospheric Physics,Chinese Academy of Sciences,2007.[张宁宁.气候变化情景下远东地区北方森林演替动态研究[D].北京: 中国科学院大气物理研究所,2007.]
[68] Zeng N,Ding Y H,Pan J H,et al. Climate change—The Chinese challenge [J]. Science,2008,319:730-731.
/
〈 |
|
〉 |