A Study of the Processing Method of Large Aperture Scintillometer Observation Data
Received date: 2010-03-16
Revised date: 2010-09-15
Online published: 2010-11-10
Sensible/latent heat fluxes can be obtained by Large Aperture Scintillometer (LAS) over several kilometers, which play an significant role in the analysis of and application to agricultural and forestry, hydrology and meteorology research. Take LAS observations in Miyun and Guantao stations over Hai River Basin in 2008 as an example. The way of data screening and quality control under unstable conditions as well as the effect of different calculation method on sensible heat flux have been discussed. The results showed: the structure parameter of the refractive index (C2n) should be calculated with the variance of the voltage of structure parameter of the refractive index; Humidity correction can be done with daily Bowen ratio; The effective height of LAS can be calculated with spatial averaged function; The Andreas(1988) function is used to get reliable sensible heat flux. Meanwhile, the nonlinear regression method and dynamic linear regression method have been used to fill the 30min and daily missing data while the 30 min missing data under stable conditions can be set to zero. The correlation relationship between daily ET measured by LAS and EC has been constructed to estimate daily ET when daily Rn<50 W/m2. Based on the above analysis, a set of LAS data processing scheme has been set up, which ensures continuous and high quality sensible/latent data can be obtained over various surfaces and weather conditions.
Bai Jie, Liu Shaomin, Ding Xiaoping, Lu Li . A Study of the Processing Method of Large Aperture Scintillometer Observation Data[J]. Advances in Earth Science, 2010 , 25(11) : 1148 -1165 . DOI: 10.11867/j.issn.1001-8166.2010.11.1148
[1] Chebouni A, Watts C, Lagouarde J P. Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer[J].Agricultural and Forest Meteorology,2000, 105: 215-226.
[2] Hoedjes J C B, Zuurbier R M, Watt C J. Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection[J].Boundary-Layer Meteorology, 2002, 105: 99-117.
[3] Hartogensis O K, De Bruin H A R, Van De Wiel B J H. Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment[J].Boundary-Layer Meteorology,2002, 105: 149-176.
[4] Beyrich F, Richter S H, Weisensee U, et al.The LITFASS-98 experiment: Fluxes over a heterogeneous land surface′[C]//Proceedings of the 14th Symposium on Boundary Layer and Turbulence, Aspen, CO, American Meteorological Society, 45 Beacon St., Boston, MA,2000:9-10.
[5] Special Issue of “Bourdary-Layer Meteorology”[M].Springer,2006,121:1-220.
[6] Beyrich F, De Bruin H A R, Meijninger W M L, et al. Results from one year continuous operation of a large aperture scintillometer over a heterogeneous land surface[J].Boundary Layer Meteorology, 2002,105: 85-97.
[7] Meijninger W M L, Beyrich F, Lüdi A, et al.Scintillometer based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—A contribution to LITFASS-2003[J].Boundary-Layer Meteorology, 2006,121: 89-110.
[8] Kleissl J, Gomez J, Hong S H, et al. Large aperture scintillometer intercomparison study[J].Boundary-Layer Meteorology,2008,128: 133-150.
[9] Savage M J.Estimation of evaporation using a dual-deam surface layer scintillometer and component energy balance measurements[J].Agricultural and Forest Meteorology,2009, 149: 501-517.
[10] Solignac P A, Brut A, Selves J L, et al.Uncertainty analysis of computational methods for deriving sensible heat flux values from scintillometer measurements[J].Atmospheric Measurement Techniques Discussions,2009, 2:1 383-1 417.
[11] Ochs G R, Wilson J J.A second-generation large aperture scintillometer[Z]. NOAA Tech. Memor. ERL ETL-232, NOAA Environmental Research Laboratories, Boulder, CO, USA,1993:24.
[12] Ochs G R, Hill R J.Optical-scintillation method of measuring turbulence inner scale[J].Applied Optics,1985,24:2 430-2 432.[13] Beyrich F. Operational aspects of scintillometry[Z]. 2nd Scintillometer Workshop, Wageningen, 2007.
[14] Ezzahar J, Chehbouni A, Hoedjes J C B, et al. The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region[J].Agricultural Water Management,2007,89: 173-184.
[15] Von Randow C, Kruijt B, Holtslag A A M, et al. Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest[J].Agricultural and Forest Meteorology,2008,148: 680-690.
[16] Ezzahar J, Chehbouni A, Hoedjes J, et al. Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA experiment[J].Journal of Hydrology, 2009,375(1/2):217-226.
[17] Scintec boundary layer scintillometer[Z]. User manual. Scintec, 2007:70.
[18] De Bruin H A R, Kohsiek W, Van den Hurk B J J M. A verification of some methods to determine the fluxes of momentum, sensible heat and water vapor using standard deviation and structure parameter of scalar meteorological quantities[J].BoundaryLayer Meteorology,1993,63: 231-257.
[19] Hoedjes J C B, Chehbouni A, Ezzahar J, et al. Comparison of large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be used to capture footprint-induced differences?[J].Journal of Hydrometeorology,2007,8: 144-159.
[20] Hartogensis O K, Watts C J, Rodriguez J C, et al.Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico?[J].Journal of Hydrometeorology,2003, 4:915-928.
[21] Marx A, Kunstmann H, Schuttemeyer D,et al. Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over savannah environment and comparison to mesoscale meteorological simulation results[J].Agricultural and Forest Meteorology,2008,148: 656-667.
[22] Lu Li, Liu Shaomin, Xu Ziwei, et al. Results from measurements of large aperture scintillometer over different surfaces[J].Journal of Applied Meteorological Science,2009,20(2): 171-178.[卢俐, 刘绍民, 徐自为,等. 不同下垫面大孔径闪烁仪观测数据处理与分析[J]. 应用气象学报,2009, 20(2): 171-178.]
[23] Kipp&Zonen. Large aperture scintillometer instruction manual[Z]. Kipp&Zonen, 2007:74.
[24] Green A E, Hayashi Y.Use of the scintillometer technique over a rice paddy[J].Journal of Agricultural Meteorology,1998, 54(3):225-234.
[25] Hemakumara H M, Chandrapala L, Moene A F. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer[J].Agricultural Water Management,2003,58: 109-122.
[26] Meijninger W M L, De Bruin H A R. The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer[J].Journal of Hydrology,2000,229: 42-49.
[27] Moene A F. Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation[J].Boundary-Layer Meteorology,2003,107: 635-653.
[28] Asanuma J, Iemoto K. Measurements of regional sensible heat flux over Mongolian grassland using large aperture scintillometer[J].Journal of Hydrology,2007,333: 58-67.
[29] Odhiambo G O, Savage M J. Sensible heat flux by surface layer scintillometry and eddy covariance over a mixed grassland community as affected by bowen ratio and MOST formulations for unstable conditions[J].Journal of Hydrometorology,2009,10:479-492.
[30] Su Z, Timmermans W, Gieske A, et al.'Quantification of landatmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site'[J].International Journal of Remote Sensing,2008,29(17):5 215-5 235.
[31] Lu Li. A Study on the Observation, Influencing Factors and Scale Relationships of the Sensible Heat Flux[D].Beijing: Beijing Normal University,2008:163.[卢俐.地表感热通量的观测、影响因子和尺度关系的研究[D].北京:北京师范大学,2008:163.]
[32] Moene A F, De Bruin H A R. Sensible heat flux data derived from the scintillometers[C]//Su Z, Jacobs C,eds. BCRS Report, Advanced Earth Observation Land Surface Climate. Final Report, 01-02,2001:85-90.
[33] De Bruin H A R, Van Den Hurk B J J M, Koshiek W. The scintillation method tested over a dry vineyard area[J].Boundary-Layer Meteorology,1995,76: 25-40.
[34] Xu Ziwei, Liu Shaomin, Xu Tongren, et al. Comparison of the gap filling methods of evapotranspiration measured by eddy covariance system[J].Advances in Earth Science,2009, 24(4):372-382.[徐自为, 刘绍民, 徐同仁,等.涡动相关仪观测蒸散量的插补方法比较[J].地球科学进展,2009, 24(4): 372-382.]
[35] Falge E, Baldocchi D D, Olson R, et al. Gap filling strategies for long term energy flux data sets[J].Agricultural and Forest Meteorology, 2001,107: 71-77.
[36] Alavi N, Warland J S, Berg A A. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach[J].Agricultural and Forest Meteorology,2006, 141:57-66.
[37] Ren Lihong, Wang Chenghai, Qiu Chongjian, et al. A study of computing the surface flux in the typical arid region of northwest China by a variational method[J].Chinese Journal of Atmospheric Sciences,2004, 28(2):269-277.[任立宏, 王澄海, 邱崇践,等.利用变分法计算西北典型干旱区地表通量的研究[J].大气科学,2004,28(2):269-277.]
[38] Yang Juan, Zhou Guangsheng, Wang Yunlong, et al. Estimation of sensible and latent heat fluxes of typical steppe in inner Mongolia based on variational method[J].Chinese Journal of Applied Ecology,2006,17(11): 2 046-2 051.[杨娟, 周广胜, 王云龙,等.基于变分方法的内蒙古典型草原水热通量估算[J].应用生态学报,2006,17(11): 2 046-2 051.]
[39] Schmidt A, Wrzesinsky T, Klemm O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks[J].Boundary-Layer Meteorology,2008, 126:389-413.
[40] Dou Zhaoyi, Liu Jianjun. Application of artificial neural networks to interpolation and extrapolation of flux data[J].Journal of Northwest Forestry University,2009, 24(3): 58-62.[窦兆一,刘建军.人工神经网络在通量观测资料插补中的应用[J].西北林学院学报,2009, 24(3): 58-62.]
[41] Verhoef W. Application of Harmonic Analysis of NDVI Time Series (HANTS)[C]//Azzali, Menenti, eds. Fourier analysis of temporal NDVI in the Southern African and American continents. Report of DLO Winand Staring Centre, Wageningen (The Netherlands), 1996.
[42] Wang T, Ochs G R, Clifford S F. A saturation-resistant optical scintillometer to measure C2n [J].Journal of Optical Society of America,1978,68: 334-338.
[43] Hill R J, Clifford S F, Lawrence R S. Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations[J].Journal of Optical Society of America,1980, 70(10): 1 192-1 205.
[44] Wesely M L. The combined effect of temperature and humidity fluctuations on refractive index[J].Journal of Applied Meteorology,1976, 15:43-49.
[45] Andreas E L. Two wavelength method of measuring path-averaged turbulent surface heat fluxes[J].Journal of Atmospheric & Oceanic Technology,1989,6: 280-292.
[46] Andreas E L. Estimating C2n over snow and sea ice from meteorological data[J].Journal of the Optical Society of America,1988,5: 481-495.
[47] De Bruin H A R, Kohsiek W, Van den Hurk B J J M. A verification of some methods to determine the fluxes of momentum, sensible heat and water vapor using standard deviation and structure parameter of scalar meteorological quantities[J].Boundary-Layer Meteorology, 1993,63: 231-257.
[48] Thiermann V, Grassl H. The measurement of turbulent surface layer fluxes by use of bichromatic scintillation[J].Boundary-Layer Meteorology,1992, 58:367-389.
[49] Wyngaard J C, Izumi Y, Collins Jr S A. Behaviour of the refractive index structure parameter near the ground[J].Journal of the Optical Society of America,1971, 61: 1 646-1 650.
[50] Wyngaard J C. On surface-layer turbulence[C]//Proceedings of the Workshop on Micrometeorology. American Meteorological Society, Denver, CO,1973:101-149.
[51] Yang K,Wang J M.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China (series D),2008,51:721-729.
/
〈 |
|
〉 |