Articles

Stable Carbon Isotopic Response of the Benthic Foraminifera from IODP311 to the Marine Methane Hydrate Geo-system

  • LI Qing ,
  • WANG Xiaoqin ,
  • CHEN Hongren ,
  • CHEN Qi ,
  • WANG Jiasheng
Expand
  • 1.Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 2.Faculty of Earth Science, China University of Geosciences, Wuhan 430074, China; 3. Exploration and Development Research Institute Sinopec Jianghan Oilfield, Qianjiang 433124, China

Received date: 2008-08-10

  Revised date: 2008-10-09

  Online published: 2008-11-10

Abstract

A preliminary research of the benthic Foraminifera from Integrated Ocean Drilling Program (IODP) Expedition 311 has been carried out for the purpose of better understanding their stable carbon isotopic response to the marine gas hydrate geo-system. SEM photographs and stable oxygen isotopes of the species Uvigerina peregrina and Bulimina mexicana indicated that diagenesis and authigenic carbonate precipitation had little effect on Foraminifera. Uvigerina peregrina and Bulimina mexicana collected from the sediments in seepage Site U1328 and in adjacent non-seepage Site U1327 exhibited a distinct negative δ13C excursion with values of U. peregrina -0.67‰~-2.75‰ PDB, B. mexicana -0.51‰~-1.52‰ PDB in Site U1327 and U. peregrina-0.72‰~-2.71‰ PDB, B.mexicana -0.58‰~-1.45‰ PDB in Site U1328 respectively. The formation of distinct stable carbon isotopic excursions of benthic Foraminifera could be most likely interpreted by the involvement of both anaerobic oxidation of methane (AOM) and food sources in sediments. The distinct negative carbon isotopic excursion of benthic Foraminifera thus could be believed as one of indicators to recognize the marine gas hydrate geo-system.

Cite this article

LI Qing , WANG Xiaoqin , CHEN Hongren , CHEN Qi , WANG Jiasheng . Stable Carbon Isotopic Response of the Benthic Foraminifera from IODP311 to the Marine Methane Hydrate Geo-system[J]. Advances in Earth Science, 2008 , 23(11) : 1161 -1166 . DOI: 10.11867/j.issn.1001-8166.2008.11.1161

References

[1] Martin R A,Nesbitt E A,Campbell K A. Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps,Cascadia accretionary margin[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2007,246:260-277.

[2] Niewohner C,Hensen C,Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta,1998,62:455-464.

[3] Rathburn A E,Levin L A,Held Z,et al. Benthic foraminifera associated with cold methane seeps on the northern California margin:Ecology and stable isotopic composition[J]. Marine Micropaleontology,2000,38:247-266.

[4] Hill T M,Kennett J P,Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel,California[J]. Marine Micropaleontology,2003,49:123-138.

[5] Chen Fang,Su Xin,Lu Hongfeng,et al. Carbon stable isotopic composition of benthic foraminiferas from the north of the south China sea:Indicator of methane-rich environment[J]. Marine Geology and Quaternary Geology,2007,27:1-7.[陈芳,苏新,陆红锋,.南海北部浅表层沉积底栖有孔虫碳同位素及其对富甲烷环境的指示[J]. 海洋地质与第四纪地质,2007,27:1-7.]

[6] Wefer G,Heinze P-M,Berger W H. Clues to ancient methane release[J]. Nature,1994,369:282.

[7] Garidel-Thoron T D,Beaufort L,Bassinot F,et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode[J]. Proceedings of the National Academy of Sciences,2004,101:9 187-9 192.

[8] Barbieri R,Panieri G. How are benthic foraminiferal faunas influenced by cold seeps? Evidence from the Miocene of Italy[J]. Paleogeography,Paleoclimatology,Paleoecology,2004,204:257-275.

[9] Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall TroughNE Atlantic[J]. Geobios,2005,38:247-255.

[10] Kennett J P,Cannariato K G,Hendy I L,et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science,2000,288:128-133.

[11] Sen Gupta B K,Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters,1994,14:88-96.

[12] Hill T M,Kennett J P,Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps,Hydrate Ridge,northeast Pacific[J]. Geochimica et Cosmochimica Acta,2004,68:4 619-4 627.

[13] Sen Gupta B K,Platon E,Bernhard J M,et al. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment,Gulf of Mexico slope[J]. Journal of Foraminiferal Research,1997,27:292-300.

[14] Expedition 311 Scientists. Cascadia Margin Gas Hydrates[R]. IODP Preliminary Report,2005,311,doi:10:2204/ iodp.pr.311.

[15] Riedel M. Three dimensional seismic investigations of northern Cascadia marine gas hydrates[Z]. Canada:University of Victoria,2001.

[16] Rathburn A E,Perez M E,Martin J B,et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2003,4:1 106.

[17] Martin J B,Day S A,Rathburn A E,et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2004,5,Q04004,doi:10.1029/2003GC000629.

[18] Panieri G. Foraminiferal response to an active methane seep environment:A case study from the Adriatic sea[J]. Marine Micropaleontology,2006,61:116-130.

[19] Spero H J,Lea D W. Experimental determination of stable isotope variability in Globigerina bulloides:Implications for paleoceanographic reconstructions[J]. Marine Micropaleontology,1996,28:231-246.

[20] Hallam S J,Putnam N,Preston C M,et al. Reverse Methanogenesis:Testing the Hypothesis with environmental genomics[J]. Science,2004,305:1 457-1 462.

[21] Hoehler T M,Alperin M J,Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:Evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochem Cycles,1994,8:451-463.

[22] Boetius A,Ravenschlag K,Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000,407:623-626.

[23] Hinrichs K U,Boetius A. The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry[C]Wefer G,Billet D,Hebbeln D,eds. Ocean Margin Systems. Heidelberg:Springer-Verlag,2002:457-477.

[24] Hinrichs K U,Hayes J M,Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999,398:802-805.

[25] Lanoil B D,Sassen R,La Duc M T,et al. Bacteria and archaea physically associated with gulf of mexico gas hydrates[J]. Applied and Environmental Microbiology,2001,67:5 143-5 153.

[26] Michaelis W,Seifert R,Nauhaus K,et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane[J]. Science,2002,297:1 013-1 015.

[27] Orphan V J,Hinrichs K U,Ussler W,et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in Anoxic Marine Sediments[J]. Applied and Environmental Microbiology,2001,67:1 922-1 934.

[28] Thomsen T R,Finster K,Ramsing N B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment[J]. Applied and Environmental Microbiology,2001,67:1 646-1 656.

[29] Jiasheng W,Wang Y,Li Q. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments: A review[J]. Frontiers of Earth Science in China,2007,1:444-451.

Outlines

/