New Views on Forming Mechanism of Deep Overburden on River Bed in Southwest of China

  • Xu Qiang ,
  • Chen Wei ,
  • Zhang Zhuoyuan
Expand
  • State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China

Received date: 2008-04-12

  Revised date: 2008-04-14

  Online published: 2008-05-10

Abstract

Recently, widespread thick ranging from 10 to even 100 meters loose accumulations were found below modern rivers bed during China's hydropower resources development process. Deep overburden on river bed not only seriously hampers the dam site selection, impacts correlation basin hydropower resources development and exploit, but also brings enormous difficulties to dam engineering design. Because deep overburden is buried under modern river bed and its formation ages priors to the first and second terrace, this phenomenon is contrary to common sense of the river evolution, so its causes have been confused. Deeply cut valley and deep accumulation events, global climate change, sea-level eustacy motion and crustal movement organically linked up are reported for the first time in this paper. The author points out a new viewpoint that global sea level greatly change during ice age and interglacial stage is the main reason that causes deep river valley and forms deep accumulation. On this basis, this paper explain that global climate change result in sea level and erosion basis considerable growth, and causes and processing of production deeply cut valley and deep accumulation by applying the principle of sequence stratigraphy. Finally, this article further related large ancient landslides preparation and occurence along river and deeply cut valley events. The author propose a new perspective that along river large ancient landslides were formed by front free face better in the deeply cut valley period. Therefore, these new views provided a reasonable explanation on the elevation of landslide front shear opening below the modern river bed over 10 meters.

Cite this article

Xu Qiang , Chen Wei , Zhang Zhuoyuan . New Views on Forming Mechanism of Deep Overburden on River Bed in Southwest of China[J]. Advances in Earth Science, 2008 , 23(5) : 448 -456 . DOI: 10.11867/j.issn.1001-8166.2008.05.0448

References

[1] Wang YunshengHuang RunqiuDuan Haipenget al. An intensive erosion event in the last glaciation in the west of China [J]. Journal of Chengdu University of TechnologyScience & Technology Edition),2006331:73-76.[王运生,黄润秋,段海澎,等. 中国西部末次冰期一次强烈的侵蚀事件[J]. 成都理工大学学报:自然科学版,2006331:73-76.]

[2] Luo Shoucheng. Cognition of geological problems of thick overburden layer [J]. Water Power1995,(4:21-25.[罗守成. 对深厚覆盖层地质问题的认识[J]. 水力发电,1995,(4:21-25.]

[3] Yang DayuanLai Lianying. Study on the origin of the deep troughs at the Three Gorges reaches of the Yangtze [J]. Mountain Research1992103:141-147.[杨达源,赖莲英.试论长江三峡河段深槽的成因[J]. 山地研究,1992103:141-147.]

[4] Cao GuangjieWang JianQu Guixian. An overview of the research on channel evolution in the Yangtze river mouth region since the last glacial maximum [J]. Advances in Earth Science20062110:1 039-1 045.[曹光杰,王建,屈贵贤. 末次盛冰期以来长江河口段河道演变研究综述[J]. 地球科学进展,20062110:1 039-1 045.]

[5] Ma GuoyanWang XiyanLi Hongxuneds. The Engineering Geology of the Lower Yellow River Course and the Quaternary Erosion of the Middle Yellow River [M]. Zhengzhou: Yellow River Water Resources Press1997.[马国彦,王喜彦,李宏勋编著. 黄河下游河道工程地质及淤积物物源分析[M]. 郑州:黄河水利出版社,1997.]

[6] Lu ShenwuRen Dechang. A review on “Research on Building Dam on Thick Overburden” [J]. Sichuan Water Power1986,(4: 11-21.[鲁慎吾,仁德昌. “深厚覆盖层建坝研究成果综述[J]. 四川水力发电,1986,(4: 11-21.]

[7] Yang Tianjun. Classification of deep and thick overlying rock group and their main engineering geological problems [J]. Water Power1998,(6:17-20.[杨天俊. 深厚覆盖层岩组划分及主要工程地质问题[J]. 水力发电,1998,(6:17-20.]

[8] Meng Yongxu. The engineering characteristics of thick overburden layer at dam site of Xiabandi reservoir and a preliminary evaluation of the main engineering geological problems [J]. Shan’xi Water Resources and Hydropower Engineering2000,(2:48-51.[孟永旭. 下坂地水库坝址深厚覆盖层工程特性及主要地质问题初步评价[J]. 陕西水利水电技术,2000 2:48-51.]

[9] Feng Jianming. The thick overburden layer exploratio practice in the gate site of Tianwan river power station [J]. Sichuan Water Power2001203:77-83.[冯建明. 田湾河大发电站闸址深厚覆盖层勘探的实践[J]. 四川水力发电,2001203:77-83.]

[10] Chen HaijunRen GuangmingNie Dexinet al. Study on engineering geologic characteristic of the deep alluvium in vallys and its evaluation methods [J]. Geological Hazards and Eniveronment Preservation199674:53-59.[陈海军,任光明,聂德新,等. 河谷深厚覆盖层工程地质特性及其评价方法研究[J]. 地质灾害与环境保护,199674:53-59.]

[11] Wang LanshengYang LizhengWang Xiaoqunet al. Discovery of huge ancient dammed lake on upstream of Minjiang River in SichuanChina [J]. Journal of Chengdu University of TechnologyScience & Technology Edition),2005321:1-11.[王兰生,杨立铮,王小群,等.岷江叠溪古堰塞湖的发现[J]. 成都理工大学学报:自然科学版,2005321:1-11.]

[12] Li Tingdong. The uplifting process and mechanism of the Qinhai-Tibet plateau[J]. Acta Geosicientia Sinica19951:1-9.[李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报,19951:1-9.]

[13] Fu RongshanLi LigangHuang Jianhuaet al. Three-step model of the Qinghai-Tibet plateau uplift [J]. Chinese Journal of Sinica1999425:609-616.[傅容珊,李力刚,黄建华,等. 青藏高原隆升过程的三阶段模式[J]. 地球物理学报,1999425:609-616.]

[14] Ma RunyongPeng JianbingXi Xianwuet al. Mechanism of progressive uplift of Qinghai-Tibet plateau [J]. Advances in Earth Science200419suppl.:41-45.[马润勇,彭建兵,席先武,等. 青藏高原的递进式隆升机制[J]. 地球科学进展,200419(增刊):41-45.]

[15] Li Dewei. A new model for uplifting mechanism of Qinghai-Tibet plateau [J]. Earth Science-Journal of China University of Geosciences2003286:593-599.[李德威.青藏高原隆升机制新模式[J]. 地球科学——中国地质大学学报,2003286:593-599.]

[16] Ge YonggangWei Mingjian. The summarizing of progresses in the study of Qinghai-Tibet plateau's uplift [J]. Journal of Capital Normal UniversityNatural Science Edition),200425special issue: 128-136.[葛永刚,魏明建. 青藏高原隆升综合研究[J]. 首都师范大学学报:自然科学版,200425(专辑):128-136.]

[17] Xiao XuchangWang Jun. A brief review of tectonic evolution and uplift of the Qinghai-Tibet plateau [J]. Geological Review1998444:372-381.[肖序常,王军. 青藏高原构造演化及隆升的简要评述[J]. 地质论评,1998444:372-381.]

[18] Ma ZongjinZhang JiashengWang Yipeng. The 3-d deformational movement episodes and neotectonic domains in the Qinghai-Tibet plateau [J]. Acta Geologica Sinica1998723:211-227.[马宗晋,张家声,汪一鹏. 青藏高原三维变形运动学的时段划分和新构造分区[J]. 地质学报,1998723:211-227.]

[19] Zhong DalaiDing Lin. The discuss mechanism and uplift process of Qinghai-Tibet plateau [J]. Science in ChinaSeries D),1996264:289-295.[钟大赉,丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学:D辑,1996264:289-295. ]

[20] Yang HuairenWang Jian. Quaternary transgressions and coastlinechanges in Huanghe riverYellow river delta [J]. Marine Geology & Quaternary Geology1990103:1-14.[杨怀仁,王建. 黄河三角洲地区第四纪海进与岸线变迁[J]. 海洋地质与第四纪地质,1990103:1-14. ]

[21] Zhu YongqiLi ChengyiZeng Chengkaiet al. On the lowest sea surface of the continental shelf of the east China sea of late pleistocene [J]. Chinese Science Bulletin1979,(7:317-320.[朱永其,李承伊,曾成开,等. 关于东海大陆架晚更新世最低海面[J]. 科学通报,1979,(7:317-320. ]

[22] Yan YuzhongWang HongLi Fenglinet al. Sedimentary environment and sea-level fluctuations revealed by Borehole BQ1 on the west coast of the Bohai bay [J]. Geological Bulletin of China2006253:357-382.[阎玉忠,王宏,李凤林,等. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动[J]. 地质通报,2006253:357-382. ]

[23] Wang JingtaiWang Pinxian. Relationship between Sea-level changes and climatic fluctuations in east China since late pleistocene [J]. Acta Geographica Sinica1980354:299-311.[王靖泰,汪品先.中国东部晚更新世以来海面升降与气候变化的关系[J]. 地理学报,1980354:299-311.]

[24] Cao GuangjieWang JianQu Guixian. Formation & sedimentary characteristics of the Yangtze river incised-Valley in Nanjing [J]. Journal of Henan UniversityNatural Science),2006361:66-69.[曹光杰,王建,屈贵贤. 南京长江大桥附近长江古河谷的形成及沉积特征[J]. 河南大学学报:自然科学版,2006361:66-69.]

[25] Zhang GuijiaLi Congxian. Land-ocean interaction in qiantangjiang estuarine area since last glaciation [J]. Marine Science Bulleten1996152:43-49.[张桂甲,李从先. 冰后期钱塘江河口湾地区的海陆相互作用[J]. 海洋通报,1996152:43-49.]

[26] Zhang CuipingJiang NaiqianHou Suzhenet al. The cause analysis of the river channel sedimentation in the downstream of recent weihe river [J]. Yellow River2006286:75-79. [张翠萍,姜乃迁,侯素贞,等. 近期渭河下游河道淤积成因分析[J]. 人民黄河,2006286:75-79. ]

[27] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation [C]Proceedings of Northwestern European Sequence Stratigraphy Congress1994: 105-123.

[28] Zhang NianxueLi XiaoLi Shouding. The new viewpoints of qurer and crustal movementvalley deep trough and palaeofloodfrom Fengjie county to Yunyang county in Three Gorges reservoir area [J]. Quaternary Sciences2005256:686-699.[张年学,李晓,李守定. 三峡库区奉节——云阳的低阶地与地壳运动、河谷深槽与古洪水的新解释[J].第四纪研究,2005256:686-699.]

Outlines

/