RESEARCH ADVANCES IN HYDROTHERMAL VENT MICROBIAL COMMUNITIES AND ITS SIGNIFICANCE FOR GEOLOGY
Received date: 2004-06-07
Revised date: 2004-11-01
Online published: 2005-07-25
Hydrothermal communities in deep seafloor live around Black Smoker sites. The primary producers of hydrothermal ecosystems are thermophiles and archaea. Bacteria convert chemicals (from the sulfurrich fluid spewed out of vents) to energy, in a process called chemosynthesis. They get energy depending on the oxidation of sulfides (H2S, FeS2) and methane and the reduction of carbon dioxide, instead of photosynthesis. There are two kinds of relationship between thermophiles and other animals. Other animals eat thermophiles or thermophiles exist in a symbiotic relationship with vent animals. Thermophiles not only depend on the deep-sea hydrothermal activities, but also play an important role of hydrothermal mineralization. The source of them is likely to be subsurface biosphere. Black smokers could be “windows to a deep biosphere”, which has crucial implication for the research of thermophiles and the understanding of astrobiology and the origin of life.
LI Jiang-hai , NIU Xiang-long , FENG Jun . RESEARCH ADVANCES IN HYDROTHERMAL VENT MICROBIAL COMMUNITIES AND ITS SIGNIFICANCE FOR GEOLOGY[J]. Advances in Earth Science, 2005 , 20(7) : 732 -739 . DOI: 10.11867/j.issn.1001-8166.2005.07.0732
[1] Wu Shiying. The Hydrothermal Sulphide Resourceat Sea Floor of the World[M]. Beijing: Oceanic Press, 2000.1-290.[吴世迎.世界海底热液硫化物资源[M].北京:海洋出版社,2000.1-290]
[2] Zeng Zhigang, Qin Yunshan. Contribution of ocean drilling to the study of seafloorhydrothermal activity[J]. Advances in Earth science,2003,18(5): 764-772.[曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展,2003,18(5):764-772.]
[3] Makoto Yuasa. Discussion on seafloor hydrothermal mineral deposit[J]. Geology News, 1983,345:34-43(in Japanese).
[4] You C F, Bickle M J. Evolution of an active sea-floor massive sulphide deposit[J]. Nature, 1998, 394:668-671.
[5] Prieur D. Microbiology of deep-sea hydrothermal vents[J]. Marine Biotechnology, 1997, 15:242-244.
[6] Reysenbach A L, Cady S L. Microbiology of ancient and modern hydrothermal systems[J]. Trends in Microbiology, 2001, 9:79-86.
[7] Dziak R P, Johnson H P. Stirring the Oceanic Incubator[J]. Science, 2002, 296: 1 406-1 407.
[8] Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge[J]. Nature, 1986,321:33-37.[9] Pradillon F, Shillito B, Young C M, et al. Developmental arrest in vent worm embryos[J]. Nature,2001,413:698-699.
[10] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30°N[J]. Nature,2001,412:145-148.
[11] Lutz R A. The biology of deep-sea vents and seeps[J]. Oceanus,1991/92,34:75-83.
[12] Marsh A G, Mullineaux L S, Young C M, et al. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents[J]. Nature, 2001, 411: 77-80.
[13] Dover C L V. Do‘eyeless’shrimp see the light of glowing deep-sea vents[J]. Oceanus,1988/89,26:47-52.
[14] Dubilier N, Mülders C, Ferdelman T, et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm[J]. Nature, 2001, 411: 298-302.
[15] Zierenberg R A, Adams M W W , Arp A J. Life in extreme environments: Hydrothermal vents[J]. Science USA, 2000,97:12 961-12 962.
[16] Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere[J].Geochimica et Cosmochimica Acta, 1993, 57:3 219-3 229.
[17] Hedrick D B, Guckert J B, White D C, et al. In situ microbial ecology of hydrothermal vent sediments[J]. FEMS Microbiology Reviews, 1992, 101:1-10.
[18] Fortin D, Ferris F G , Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J]. American Mineralogist,1998, 83:1 399-1 408.
[19] Woese C R, Fox G E. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms[J]. Science USA,1977,74:5 088-5 090.
[20] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya[J]. Science USA,1990,87:4 576-4 579.
[21] Xie Tao, Ding Dafu. The third form of life—Advance in three boundary theory[J].Life Sciences,1997,19:233-236. [解涛,丁达夫.生命的第三界——三界学说的新发展[J].生命科学,1997,19:233-236.]
[22] Bult C J, White O,Olsen G J, et al. Complete genome sequence of the methanogenic archaeon, methanococcus jannasvhii[J]. Science,1996,273:1 085-1 073.
[23] Hu Kai, Wu Qingshu. The basic outline of the evolution of single cell life-form[J]. Hereditas,2002, 24(1):104-110. [胡楷,吴庆书.单细胞生物进化研究的进步[J].遗传,2002,24(1):104-110.]
[24] Ma Ting, Liu Rulin. Study on thermotolerant mechanism of thermophiles[J]. Microbiology Bulletin, 2002, 29:86-88.[马挺, 刘如林. 嗜热菌耐热机理的研究进展[J].微生物学通报,2002, 29:86-88.][25] Gold T. The deep, hot biosphere[J]. Science USA, 1992, 89:6 045-6 049.
[26] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296: 1 077-1 082.
[27] Madigan M T, Martinko J M, Parker J. Biology[M]. Beijing: Science Press, 2001.751-760.
[28] Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites[J]. Canadian Mineralogist, 1988,26:859-869.
[29] Warren L A, Kauffman M E. Microbial geoengineers[J]. Science, 2003, 299:1 027-1 028.
[30] Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of Sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290:1 744-1 747.
[31] Kazue Tazaki. 微生物がつくる鉱物[J]. Geology News, 1995,489:17-30(in Japanese).
[32] Beveridge T J, Fyfe W S. Metal fixation by bacterial cell walls[J]. Canadian Journal of Earth Science,1985, 22: 1 892-1 898.
[33] Cary S C, Shank T, Stein J. Worms bask in extreme temperatures[J]. Nature, 1998, 391: 545-546.
[34] Maginn E J, Little C T S, Herrington R J, et al. Mills Sulphide mineralisation in the deep sea hydrothermal vent polychaete, Alvinella pompejana: Implications for fossil preservation[J]. Marine Geology, 2002, 181: 337-356.
[35] Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews,1998,43:91-121.
[36] Dai Yongding. Biomineralogy[M]. Beijing: Petroleum Industry Publishing House, 1994.303-321. [戴永定.生物矿物学[M].北京:石油工业出版社, 1994.303-321.]
[37] Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J]. Science, 2003, 299:120-123.
[38] Hofmann B A, Farmer J D. Filamentous fabrics in low-temperature mineral assemblages: Are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars[J]. Planetary and Space Science, 2000, 48: 1 077-1 086.
[39] D’Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments[J]. Science, 2002, 295: 2 067-2 070.
[40] Taylor C D ,Wirsen C O. Microbiology and ecology of filamentous sulfur formation[J]. Science, 1997, 277:1 483-1 485.
[41] Zhang Yun. Biological Evolution[M].Beijing: Beijing University Press,1998.41-86.[张昀. 生物进化[M].北京:北京大学出版社, 1998.41-86.]
/
〈 |
|
〉 |