Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2012, Vol. 27 Issue (9): 925-937    DOI: 10.11867/j.issn.1001-8166.2012.09.0925
Advances in Research of Using Trace Elements of Crude Oil in Oil-Source Correlation
Cao Jian1, Wu Ming1, Wang Xulong2, Hu Wenxuan1, Xiang Baoli2, Sun Ping’an1, Shi Chunhua1, Bao Haijuan2
1.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China;2.PetroChina Xinjiang Oilfield Company, Karamay 834000, China
Download:  PDF (1500KB) 
Export:  BibTeX | EndNote (RIS)      

Trace element geochemistry  of crude oil can be used in oil-source correlation. The correlation parameters can be mainly divided into three categories: ①cluster analysis of trace elements and its indicated general distribution of the elements; ②composition of different families and types of elements, metal elements of transition family in particular; ③rare earth elements. However, there are many uncertainties in this research field. For instance, which elements can be used in oilsource correlation? Which elements have general implications and can be applied to different areas? What factors controlling the effectiveness of the application and how about the main controlling factors? As a consequence, many understandings are preliminary and the successful applications are relatively less in comparison with the application of conventional organic geochemical studies. Trace elements of crude oil are mainly derived from external environment of oil formation and migration and accumulation. In the process of oil generation, migration and accumulation, the trace elements accumulate in oil  by various ways, e.g., metalloporphyrin chelate compound, organic complex compound and adsorbed matters. This takes place through complex organic-inorganic interactions between reservoir hydrocarbons and water and rocks, with the elements dominantly accumulating in asphaltene. In these processes, trace elements of oil differentiate. Moreover, the elements can also differentiate in the formation and evolution of oil, being influenced by the primary organic matter type and maturity and secondary alterations of oil source. These all lead to the heterogeneity of element composition of oil due to different geochemical natures of the elements. The elements that have no or few changes are good parameters for oil-source correlation. This is the principle and theoretical foundation of the application of trace elements of crude oil  to oil-source correlation.

Key words:  Oil-source correlation      Trace element geochemistry      Hydrocarbon-water-rock system      Organic-inorganic interaction      Reservoir geochemistry.     
Received:  07 May 2012      Published:  10 September 2012
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors

Cite this article: 

Cao Jian, Wu Ming, Wang Xulong, Hu Wenxuan, Xiang Baoli, Sun Ping’an,et al. Advances in Research of Using Trace Elements of Crude Oil in Oil-Source Correlation. Advances in Earth Science, 2012, 27(9): 925-937.

URL:     OR

[1]Li Maowen. Quantification of petroleum secondary migration distances: Fundamentals and case histories[J]. Petroleum Exploration and Development, 2000, 27(4): 11-17.[黎茂稳. 油气二次运移研究的基本思路和几个应用实例[J]. 石油勘探与开发, 2000, 27(4): 11-17.]

[2]Zhang Shuichang, Liang Digang, Li Maowen, et al. Molecular fossils and oil-source correlation in the Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(Suppl.1): 16-23.[张水昌, 梁狄刚, 黎茂稳,等. 分子化石与塔里木盆地油源对比[J]. 科学通报, 2002, 47(增刊I): 16-23.]

[3]Peng Ping’an, Lü Xiuxiang. Geochronology of Reservoirs in Chinese Superimposed Basins[R]. Beijing: China University of Petroleum, 2003.[彭平安, 吕修祥. 中国叠合盆地成藏年代学研究[R]. 北京:中国石油大学, 2003.]

[4]Wang Tieguan, He Faqi, Wang Chunjiang. Geochemistry of Tahe Ordovician Reservoir[R]. Beijing: China University of Petroleum, 2003.[王铁冠, 何发岐, 王春江. 塔河油田奥陶系油气藏成藏地球化学研究[R]. 北京:中国石油大学, 2003.]

[5]Curiale J A. Oil-source rock correlations-limitations and recommendations[J]. Organic Geochemistry, 2008, 39(8): 1 150-1 161.

[6]Sun Y G, Sheng G Y, Peng P A, et al. Compound-specific stable carbon isotope analysis as a tool for correlating coal-sourced oils and interbedded shale-sourced oils in coal measures: An example from Turpan Basin, north-western China[J]. Organic Geochemistry, 2000, 31(12): 1 349-1 362.

[7]Ma Anlai, Jin Zhijun, Wang Yi. Problems of oil-source correlation for marine reservoirs in Paleozoic craton area in Tarin Basin and future direction of research[J]. Oil & Gas Geology, 2006, 27(3): 356-362.[马安来, 金之钧, 王毅. 塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向[J]. 石油与天然气地质, 2006, 27(3): 356-362.]

[8]Zhu Y M, Hao F, Zou H Y, et al. Jurassic oils in the central Sichuan basin, southwest China: Unusual biomarker distribution and possible origin[J]. Organic Geochemistry, 2007, 38: 1 884-1 896.

[9]Li Maowen, Wang Peirong, Xiao Zhongyao. Age-specific Biomarkers Profile in Northwest China and Geochronology of Marine Source Rocks in the Tarim Basin[R]. Beijing: China University of Petroleum, 1999.[黎茂稳, 王培荣, 肖中尧. 中国西北地区断代生物标志物剖面及塔里木盆地海相主力油源岩时代研究[R]. 北京:中国石油大学, 1999.]

[10]Chen J P, Deng C P, Liang D G, et al. Mixed oils derived from multiple source rocks in the Cainan oilfield, Junggar Basin, Northwest China. Part II: Artificial mixing experiments on typical crude oils and quantitative oil-source correlation[J]. Organic Geochemistry, 2003, 34(7): 911-930.

[11]Wang Tieguan. Biomarkers Geochemistry[M]. Wuhan: China University of Geosciences Press, 1990.[王铁冠. 生物标志物地球化学研究[M]. 武汉: 中国地质大学出版社, 1990.]

[12]Fan Pu, Zhang Baisheng, Yu Xinke. Biomarkers from recent salt-lake sediments[J]. Advances in Earth Science, 1994, 9(3): 6-17.[范璞,张柏生,于心科. 近代盐湖沉积物中的生物标志化合物[J].地球科学进展,1994, 9(3): 6-17.]

[13]Fu Jiamo, Sheng Guoying. Advances in molecular organic geochemistry[J]. Progress in Natural Science, 1995, 5(2): 139-146.[傅加谟, 盛国英. 分子有机地球化学研究进展[J]. 自然科学进展, 1995, 2: 139-146.]

[14]Peters K E, Walters C C, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments (2nd)[M].UK: Cambridge University Press, 2005:1 155.

[15]Zhao Wenzhi, Zhang Guangya, He Haiqing, et al. Marine Petroleum Geology and Superimposed Petroliferous Basins in China[M]. Beijing: Geological Publishing House, 2002.[赵文智, 张光亚, 何海清,等. 中国海相石油地质与叠合含油气盆地[M]. 北京: 地质出版社,2002.]

[16]Jin Zhijun, Wang Qingchen. Advances in hydrocarbon accumulation of typical superimposed basins in China[J]. Science in China (Series D), 2004, 34(Suppl.1): 1-12.[金之钧, 王清晨. 中国典型叠合盆地与油气成藏研究新进展——以塔里木盆地为例[J]. 中国科学:D辑, 2004, 34(增刊I): 1-12.]

[17]Jia Chengzao. The evolution and exploration of the middle and lower combinations of superimposed basins in China[J]. China Petroleum Exploration, 2006,(1): 1-4.[贾承造.中国叠合盆地形成演化与中下组合油气勘探潜力[J]. 中国石油勘探, 2006,(1): 1-4.]

[18]Pang Xiongqi, Luo Xiaorong, Jiang Zhenxue, et al. Advancements and problems on hydrocarbon accumulation research of complicated superimposed basins in western China[J]. Advances in Earth Science, 2007, 22(9): 879-887.[庞雄奇, 罗晓容, 姜振学,等. 中国西部复杂叠合盆地油气成藏研究进展与问题[J]. 地球科学进展, 2007, 22(9): 879-887.]

[19]Hao F, Zhang Z H, Zou H Y et al. Origin and mechanism of the formation of the low-oil-saturation Moxizhuang field, Junggar Basin, China: Lmplication for petroleum exploration in basins having complex histories[J]. AAPG Bulletin, 2011, 95(6): 983-1 008.

[20]Li Sumei, Pang Xiongqi, Jin Zhijun, et al. Geochemical characteristics of the mixed oil in Junhu sag of Subei Basin[J]. Journal of China University of China (Edition of Natural Science), 2002, 26(1): 11-15.[李素梅, 庞雄奇, 金之钧,等. 苏北金湖凹陷混合原油的地质地球化学特征[J]. 中国石油大学学报:自然科学版, 2002, 26(1): 11-15.]

[21]Liang Digang, Chen Jianping. Oil-source correlations for high and over matured marine source rocks in South China[J]. Petroleum Exploration and Development, 2005, 32(2): 8-14.[梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2): 8-14.]

[22]Wang Yanmei, Xiong Yongqiang, Wang Liwu, et al. Hydrocarbon isotopic compositions of n-alkanes in crude oils and extracts of Upper Cretaceous from southern Songliao Basin[J]. Chinese Journal of Geochemistry, 2006, 35(6): 602-608.[王彦美, 熊永强, 王立武,等. 松辽盆地南部上白垩统烃源岩和原油中正构烷烃的氢同位素组成研究[J]. 地球化学, 2006, 35(6): 602-608.]

[23]Li M W, Huang Y S, Obermajer M, et al. Hydrogen isotopic compositions of inividual alkanes as a new approach to petroleum correlation: Case studies from the Western Canada Sedimentary Basin[J]. Organic Geochemistry, 2001, 32: 1 387-1 399.

[24]Price L C, LeFever J. Dysfunctionalism in the Williston Basin: The Bakken/mid-Madison petroleum system[J]. Bulletin of Canadian Petroleum Geology, 1994, 42: 187-218.

[25]Filby R H. Origin and nature of trace element species in crude oils: Lmplications for correlation and other geochemical studies[C]∥Parnell J ed. Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins(Geological Society Special Publication). London: School of Geosciences The Queen’s University of Belfast, 1994, 78: 203-221.

[26]Ellrich J, Hirner A V, Stark H. Distribution of trace elements in crude oils from Southern Germany[J]. Chemical Geology, 1985, 48(1/4): 313-323.

[27]Jin Qiang, Tian Haiqin, Dai Junsheng. Application of microelement composition to the correlation of solid bitumen with source rocks[J]. Experimental Petroleum Geology, 2001, 23(3): 285-290.[金强, 田海芹, 戴俊生.微量元素组成在固体沥青-源岩对比中的应用[J]. 石油实验地质, 2001, 23(3): 285-290.]

[28]Deng Ping. The application of trace amount of elements in the exploration of oil and gas[J]. Petroleum Exploration and Development, 1993, 20(1): 27-32.[邓平. 微量元素在油气勘探中的应用[J]. 石油勘探与开发, 1993, 20(1): 27-32.]

[29]Fu X G, Wang J, Zeng Y H, et al. Geochemistry and origin of Rare Earth Elements (REEs) in the Shengli River oil shale, northern Tibet, China[J]. Chemie der Erde,2001,7(1):21-30, doi: http:∥

[30]Cao J, Wu M, Chen Y, et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qiadam Basin, northwest China[J]. Chemie der Erde, doi: http:∥

[31]Saban M, Vitorovic O, Vitorovic D. Correlation of crude oils from Vojvodina (Yugoslavia) based on trace elements[C]∥Kalia-guine S, Mahay A, eds. Symposium on Characterization of Heavy Crude Oils and Petroleum Residues. Paris: Editions Technip, 1984: 122-127.

[32]Hitchon B, Filby R H. Use of trace elements for classification of crude oils into families-example from Alberta, Canada[J]. AAPG Bulletin, 1984, 68:838-849.

[33]Lewan M D, Maynard J B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1982, 46: 2 547-2 560.

[34]Al-Shahristani H, Al-Atyia M J. Vertical migration of oil in Iraqi oil fields: Evidence based on vanadium and nickel concentrations[J]. Geochimica et Cosmochimica Acta, 1972, 36(9): 929-938.

[35]Zhang Min, Zhang Jun. Effect of water washing on hydrocarbon compositions of petroleum sandstone reservoir in Tarin Basin, NW China[J]. Chinese Journal of Geochemistry, 2000, 29: 287-292.[张敏, 张俊. 水洗作用对油藏中烃类组成的影响[J]. 地球化学, 2000, 29: 287-292.]

[36]Hirner A V. Metals in crude oils, asphaltenes, bitumen and kerogen in Molasse Basin, Southern Germany[C]∥Filby R H, Branthaver J F, eds. Metal Complexes in Fossil Fuels. USA:American Chemical Society, 1987, 344:146-153.

[37]Curiale J A. Distribution and occurrence of metals in heavy crude oils and solid bitumens-implications for petroleum exploration[C]∥Meyer R F ed. Exploration for Heavy Crude Oil and Natural Bitumen. Tulsa(OK): AAPG, 1987, 25: 207-218.

[38]Xu Zhengqiu, Deng Ping. Trace elements in kerogen and crude oil: Implication for petroleum exploration[C]∥Annual Report of State Key Laboratory of Gas Geochemistry, Lanzhou Institure of Geology. Lanzhou:Gansu Science and Technology Press, 1993: 186-198.[徐正球, 邓平. 干酪根和原油中的微量元素研究及其在油气勘探中的应用[C]∥中国科学院兰州地质研究所气体地球化学国家重点实验室研究年报.兰州: 甘肃科学技术出版社, 1993: 186-198.]

[39]Wang Qi, Shi Ji’an. Advances in extraction of organic-inorganic interaction information within oil reservoir and precise correlation technique with source rock[J]. Natural Gas Geoscience, 2005, 16: 564-570.[王琪, 史基安. 油藏储层内有机—无机相互作用信息提取与烃源岩精细对比技术研究进展[J]. 天然气地球科学, 2005, 16: 564-570.]

[40]Ding Zuguo, Chai Zhifang, Ma Jianguo, et al. Characteristics and petroleum geochemical significance of trace transition elements in crude oils and organic materials extracted from Jianghan oil field[J]. Acta Sedimentologica Sinica, 1992, 10(1): 108-116.[丁祖国, 柴之芳, 马建国, 等. 江汉油田原油和生油岩有机抽提物中过渡族微量元素特征及其石油地球化学意义[J]. 沉积学报, 1992, 10(1): 108-116.]

[41]Manning D A C, Gize A P. The Role of Organic Matter in Ore Transport Processes[M]. New York: Plenum Press, 1993: 547-563.

[42]Liu Xiaowei, Cheng Keming. Application of trace element in the study of petroleum from coals[J]. Petroleum Exploration and Development, 1995, 22(5): 40-44.[刘小薇, 程克明. 微量元素在煤成烃研究中的应用[J]. 石油勘探与开发, 1995, 22(5): 40-44.]

[43]Zhao Zengyi, Zhao Jianhua, Wang Haijing, et al. Distribution characteristics and applications of trace elements in Junggar Basin[J]. Natural Gas Exploration and Development, 2007, 30(2): 30-32.[赵增义, 赵建华, 王海静,等. 准噶尔盆地微量元素的分布特征及其应用[J]. 天然气勘探与开发, 2007, 30(2): 30-32.]

[44]Selby D, Creaser A R, Fowler M G. Re-Os elemental and isotopic systematic in crude oils[J]. Geochimica et Cosmochimica Acta, 2007, 71: 378-386.

[45]Yang Zhiqiong, Duan Sihong. Distribution and geochemical characteristics of trace metallic elements in the oil of Jianghan salt lake basin[J]. Acta Sedimentological Sinica, 1987, 5(4): 137-144.[杨志琼, 段思宏. 江汉盐湖盆地原油中微量金属元素的分布及应用[J]. 沉积学报, 1987, 5(4): 137-144.]

[46]Guo Zhanqian. Geochemical characteristics of oils in China—A probe into their organic and inorganic sources[J]. Geology and Geochemistry, 2001, 29(4): 7-13.[郭占谦. 中国原油的地球化学特征——兼论中国原油的有机与无机来源[J]. 地质与地球化学, 2001, 29(4): 7-13.]

[47]Lewan M D. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 1984, 48: 2 231-2 238.

[48]Barwise A J G. Role of nickel and vanadium in petroleum classification[J]. Energy and Fuels, 1990, 4(6), 647-652.

[49]Zhao Mengjun, Huang Difan, Liao Zhiqin. Geochemistry of trace elements in crude oils[J]. Petroleum Exploration and Development, 1996, 23(3): 19-23.[赵孟军, 黄第藩, 廖志勤. 原油中微量元素地球化学特征[J]. 石油勘探与开发, 1996, 23(3): 19-23.]

[50]Udo O T, Ekwere S, Abrakasa S. Some trace metal in selected Niger Delta crude oils: Application in oil-oil correlation studies[J]. Journal of Mineralogy Geology, 1992, 28: 289-291.

[51]Akinlua A, Torto N. Determination of selected metals in Niger delta oils by graphite furnace atomic absorption spectrometry[J]. Analytical Letter, 2006, 39(9): 1 993-2 005.

[52]Fu Jiamo, Wang Chouqing, Shi Jiyang. Organic Geochemistry[M]. Beijing: Science Press, 1982: 150-161.[傅加谟, 王铸青, 史继扬.有机地球化学[M]. 北京: 科学出版社, 1982: 150-161.]

[53]Chen Jun, Wang Henian. Geochemistry[M]. Beijing: Science Press, 2004: 217-268.[陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004: 217-268.]

[54]Tissot B P, Welte D H. Petroleum Formation and Occurrence(2nd)[M]. Berlin: Springer, 1984.

[55]Bian Lizeng. Biological composition of oil generating material in marine source rocks[C]∥Guan  Defan, Qin Jianzhong, Cao Yin, eds. The Application of Analysis and Testing Technology in Petroleum Samples. Beijing: Petroleum Industry Press, 2006: 269-290.[边立曾. 海相烃源岩生烃母质生物构成特征[C]∥关德范, 秦建中, 曹寅. 石油地质样品分析测试技术及应用. 北京: 石油工业出版社, 2006: 269-290.]

[56]Liu Dameng, Jin Kuili. Element enrichment regularity of maceral in source rocks of Tarim Basin[J]. Coal Geology & Exploration,1995, 23(5): 19-21.[刘大锰, 金奎励. 塔里木盆地烃源岩显微组分的元素富集规律[J]. 煤田地质与勘探, 1995, 23(5): 19-21.]

[57]Raise O, Argaman Y, Yannai S. Mechanism of biosorption of different heavy metals by brown marine macroalgae[J]. Biotechnology and Bioengineering, 2004, 87(4): 451-458.

[58]Campos J A, Tejera N A. Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils[J]. Biological Trace Element Research, 2011, 143(1): 540-554.

[59]Horikoshi T, Nakajima A, Sakaguchi T. Studies on the accumulation of heavy metal elements in biologicAal systems[J]. Applied Microbiology and Biotechnology, 1981, 12(2): 76-83.

[60]Liu Zhili, Liu Xuexian, Li Pengfu. Mineralization tests made by algae and it’s organic matters[J]. Acta Sedimentology Sinica, 1999, 17(1): 9-18.[刘志礼, 刘雪娴, 李朋富. 藻类及其有机质的成矿作用试验[J]. 沉积学报, 1999, 17(1): 9-18.]

[61]Zhuang Hanping, Lu Jialan, Fu Jiamo, et al. Research on occurrence of large-scale Ge deposit in Lin Cang[J]. Science in China (Series D), 1998(Suppl.2): 37-42.[庄汉平, 卢家烂, 傅家谟,等. 临沧超大型锗矿床赋存状态研究[J]. 中国科学:D辑, 1998, 28(增刊II): 37-42.]

[62]Teng Geer, Liu Wenhui, Xu Yongchang, et al. The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica, 2004, 22(2): 365-372.[腾格尔, 刘文汇, 徐永昌,等. 缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例[J]. 沉积学报, 2004, 22(2): 365-372.]

[63]He Zhongfa, Bian Lizeng, Chen Jianping, et al. A correlation between content of iron element and organic carbon in the source rocks, Late Permian to Early Triassic in the Shiwandashan Basin, South China[J]. Petroleum Exploration and Development, 2004, 31(1): 45-47.[何中发, 边立曾, 陈建平,等.十万大山盆地晚二叠世、早三叠世烃源岩中铁元素丰度与有机碳丰度相关关系[J]. 石油勘探与开发, 2004, 31(1): 45-47.]

[64]Chen Jianfa, Sun Shengli. Preliminary study of geochemical characteristics and formation of organic matter rich stratigraphy of Xiamaling formation of later Proterozoic in North China[J]. Natural Gas Geoscience, 2004, 15(2): 110-114.[陈践发, 孙省利. 华北新元古界下马岭组富有机质层段的地球化学特征及成因初探[J]. 天然气地球科学, 2004, 15(2): 110-114.]

[65]Chen Jianfa, Sun Shengli, Liu Wenhui, et al. Geochemical characteristics and origin of the Lower Cambrian organic-rich layer in the Tarim Basin[J]. Science in China (Series D), 2004, 34(Suppl.1): 107-113.[陈践发, 孙省利, 刘文汇, 等. 塔里木盆地下寒武统底部富有机质层段地球化学特征及成因探讨[J]. 中国科学:D辑, 2004, 34(增刊I): 107-113.]

[66]Jin Qiang. Geochemistry characteristics of trace elements in evaporates of the Tertiary in western Qaidam Basin[J]. Journal of China University of China (Edition of Natural Science), 2003, 27(3): 1-5.[金强. 柴达木盆地西部第三系蒸发岩微量元素组成及其地球化学特征[J]. 石油大学学报:自然科学版, 2003, 27(3): 1-5.]

[67]Zhang Zhihuan, Deng Zuyou, Wu Shuiping, et al. Geochemical alteration of hydrocarbon compositions during migration and accumulation and its controlling factors[J]. Geological Journal of China Universities, 2003, 9(3): 484-493.[张枝焕, 邓祖佑, 吴水平,等. 石油成藏过程中的地球化学变化及控制因素的综合评述[J]. 高校地质学报, 2003, 9(3): 484-493.]

[68]Wang Xulong. Research on Hydrocarbon Source and Accumulation of Pen1jingxi Sag, Junggar Basin[D]. Nanchong: Southwest Petroleum Institute,2001.[王绪龙. 准噶尔盆地盆1井西凹陷区油气源与成藏研究[D].南充: 西南石油学院, 2001.]

[69]Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin,1989, 73(1): 1-23.

[70]Cai Chunfang, Mei Bowen, Ma Ting, et al. Fluid-rock Interactions in the Tarim Basin[M]. Beijing: Geological Publishing House, 1997.[蔡春芳, 梅博文, 马亭,等. 塔里木盆地流体—岩石相互作用研究[M]. 北京: 地质出版社, 1997.]

[71]Boles J R. Carbonate cementation in Tertiary sandstones of the San Joaquin Basin[C]∥Morad S ed. Carbonate Cementation in Sandstones: International Association of Sedimentology Special Publication, 1998, 26: 261-284.

[72]Cao Jian, Hu Wenxuan, Zhang Yijie, et al. Geochemical analysis on petroleum fluid activity in the Hongshanzui-Chepaizi fault zone, the Junggar Basin[J]. Geological Review, 2005, 51(5): 591-599.[曹剑, 胡文瑄, 张义杰,等. 准噶尔盆地红山嘴—车排子断裂带含油气流体活动特点地球化学研究[J]. 地质论评, 2005, 51(5): 591-599.]

[73]Liu Yingjun, Cao Liming, Li Zhaolin. Element Geochemistry[M]. Beijing: Science Press, 1984: 50-124.[刘英俊, 曹励明, 李兆麟. 元素地球化学[M]. 北京: 科学出版社, 1984: 50-124.]

[74]Omotoso O E, Munoz V A, Mikula R J. Mechanisms of crude oil-mineral interactions[J]. Spill Science & Technology Bulletin, 2002, 8(1): 45-54.

[75]Cao Jian, Zhang Yijie, Hu Wenxuan, et al. Developing characteristics of kaolinite in central Junggar Basin and their effect on the reservoir quality[J]. Acta Mineralogica Sinica, 2005, 25(4): 367-373.[曹剑, 张义杰, 胡文瑄,等. 油气储层自生高岭石发育特点及其对物性的影响[J]. 矿物学报, 2005, 25(4): 367-373.]

[76]Pan C C, Feng J H, Tan Y M, et al. Interaction of oil components and clay minerals in reservoir sandstones[J]. Organic Geochemistry, 2005, 36(4): 633-654.

[77]Jin Z J, Cao J, Hu W X, et al. Episodic petroleum fluid migration in fault zones of the northwestern Junggar basin (NW China): Evidence from hydrocarbon-bearing zoned calcite cement[J]. AAPG Bulletin, 2008, 92(9): 1 225-1 243.

[78]Cao J, Hu W X, Yao S P, et al. Mn content of reservoir calcite cement: A novel inorganic geotracer of secondary petroleum migration in the tectonically complex Junggar Basin (NW China)[J].Science in China (Series D), 2007, 50(12): 1 796-1 809.

[79]Hudgson G W. Vanadium, nickel and iron trace metals in crude oils of western Canada[J]. AAPG Bulletin, 1954, 38: 2 537-2 554.

[80]Selby D, Creaser R A. Direct radiometric dating of hydrocarbon deposits using Rhenium-Osmium isotopes[J]. Science, 2005, 308: 1 293-1 295.

[81]Manning L K, Frost C D, Branthaver J D. A Neodynium isotopic study of crude oils and source rocks, potential applications for petroleum exploration[J]. Chemical Geology, 1991, 91: 125-138.

[82]Branthaver J F, Filby R H. Application of metal complexes in petroleum to exploration geochemistry[C]∥Felby R H, Branthaver J F, eds. Metal Complexes in Fossil Fuel. American Chemical Society Symposium Series, 1987, 344: 84-99.

[83]Lu Jialan, Fu Jiamo, Peng Ping’an, et al. Organic Geochemistry in Metallic Mineralization[M]. Guangzhou: Guangdong Science and Technology Press, 2004:351.[卢家烂, 傅加谟, 彭平安,等. 金属成矿中的有机地球化学研究[M]. 广州: 广东科技出版社, 2004:351.]

[84]Palmer S E. Porphyrin distributions in degraded and non-degraded oils from Colombia[C]∥Abstracts in 186th American Chemical Society National Convention, Geochemistry Division. Washington DC,1993.

[85]Strong D, Filby R H. Vanadyl porphyrin distribution in the Alberta Oil Sand Bitumens[C]∥Filby R H, ranthaver J F, eds. Metal Complexes in Fossil Fules. American Chemical Society Symposium Series, 1987, 344: 154-172.

[86]Sundararaman P, Hwang R J. Effect of biodegradation on vanadylporphyrin distribution[J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2 283-2 290.

No Suggested Reading articles found!