Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2014, Vol. 29 Issue (3): 404-411    DOI: 10.11867/j.issn.1001-8166.2014.03.0404
Orginal Article     
Optimization of Spatial Pattern of Municipal Sewage Treatment Facilities —A Case Study of Huai’an City, Jiangsu Province
Zhao Haixia1, Jiang Xiaowei2, Dong Yawen1, Cui Jianxin1
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
2. Jiangsu Engineering Research Center for Rural Environmental Protection and Ecological Remediation, School of the Environment, Nanjing University, Nanjing 210046, China
Download:  HTML  PDF (6502KB) 
Export:  BibTeX | EndNote (RIS)      

It is significant to build municipal sewage treatment facilities in cities, especially in large cities, both for the sustainable development and for the environmental protection, especially in large cities. This paper analyzes the spatial pattern, changing trends and the environmental impact of specific pollution sources. Taking Huai’an City of Jiangsu Province for example. The demand for sewage treatment facilities in the future is calculated, based on which a match between municipal treatment capacity and sewage discharge is built. Township is taken as the evaluation unit in the study. Then, the characteristics of wastewater discharge are drawn, along with the actual ability and designed capacity of the wastewater treatment facilities. Considering all of the three aspects mentioned above, the study area is divided into three types, including the type of sewage treatment potential released, the type of sewage treatment enhanced, the type of status maintained. ArcGIS spatial analysis method is necessary in the study. By comparing with the quantity of wastewater discharge, the potential capacity of treatment facilities obviously gets asked. In the future, the facilities standard need to be rebuilt and expanded in order to enhance governance ability of controlling the regional waste water, especially in the townships with multiple population concentrating, urbanization and industrialization fastest growing. Townships at the edge of urban area need to maintain the status quo of sewage treatment facilities and pipe network for future demands. Furthermore, those scattered in industrial enterprises agglomeration area, such as industrial parks, economic development zones, need to strengthen the sewer network and related infrastructure facilities construction for releasing the potential of sewage treatment. Based on that, guidance is proposed for promoting the efficiency of the building and operating of sewage treatment facilities, and then it may provide scientific basis for site selection and layout optimization of municipal sewage treatment facilities.

Key words:  Sewage treatment capacity      Sewage discharge      Spatial match      an city      Huai&#x02019     
Received:  02 January 2014      Published:  10 March 2014
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Zhao Haixia
Jiang Xiaowei
Dong Yawen
Cui Jianxin

Cite this article: 

Zhao Haixia, Jiang Xiaowei, Dong Yawen, Cui Jianxin. Optimization of Spatial Pattern of Municipal Sewage Treatment Facilities —A Case Study of Huai’an City, Jiangsu Province. Advances in Earth Science, 2014, 29(3): 404-411.

URL:     OR

[1] Zhou Jianzhong,Ma Linwei, Sun Zheng, et al. A new concept for site selection of municipal wastewater treatment plant[J]. China Water & Wastewater, 2007,23(2): 36-38.[周建忠,马林伟,孙政, 等.城市污水处理厂厂址选择新思维[J].中国给水排水,2007,23(2): 36-38.]
[2] Shi Xiaoqing, Zhao Jingzhu, Ouyang Zhiyun, et al. Urban eco-security and its dynamic assessment method[J]. Acta Ecologica Sinica, 2005, 25(12): 3 327-3 343.[施晓清, 赵景柱, 欧阳志云,等. 城市生态安全及其动态评价方法[J].生态学报,2005,25(12): 3 327-3 343.]
[3] Zhang Zhongxiang, Qian Yi. Urban Sustainable Development and Water Pollution Control Problem[M]. Beijing: China Building Industry Press, 1998.[张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京:中国建筑工业出版社,1998.]
[4] He Chansheng. Watershed science and water resources management[J]. Advances in Earth Science, 2012,27 (7):705-711.[贺缠生.流域科学与水资源管理[J].地球科学进展,2012,27(7):705-711.]
[5] Xue Huifeng, Zhang Huilin. Urban Water Pollution Control Needs Local Conditions[N]. China Envirenment News,2008-07-01.[薛惠锋,张慧琳.城市水污染治理需因地制宜[N].中国环境报,2008-07-01.]
[6] Huang Zhiping, Zhang Keqiang, Shen Fengju, et al. Investigation on rural domestic wastewater treatment models in Chaohu Lake Basin[J]. Journal of Agro-Environment Science, 2012,31(1):179-184.[黄治平,张克强,沈丰菊,等.巢湖流域农村生活污水处理技术模式调查和分析[J].农业环境科学学报,2012,31(1):179-184.]
[7] Yang Junchen,Wang Kun, Huang Likun, et al. Emission rates of aromatic hydrocarbons and chlorinated hydrocarbons at a wastewater treatment plant[J]. China Environmental Science, 2012,32(3):433-439.[杨俊晨,王琨,黄丽坤, 等.污水处理厂芳香烃和氯代烃逸散速率研究[J].中国环境科学,2012,32(3):433-439.]
[8] Wang Kun, Yang Junchen, Huang Likun, et al. Distributions of BTEX and chlorinated hydrocarbons in three phases during wastewater treatment processing[J]. Research of Environmental Sciences, 2012, 25(2):186-192.[王琨,杨俊晨,黄丽坤, 等. 污水处理过程中苯系物和氯代烃三相分布规律[J].环境科学研究,2012,25(2):186-192.]
[9] Colmenarejo M F, Rubio A, Sanchez E, et al. Evaluation of municipal wastewater treatment plants with different technologies at Las Rozas, Madrid (Spain)[J]. Environmental Management Journal, 2006,81:399-404.
[10] Zeybek Z, Cetinkaya S Y, Alioglu F, et al. Determination of optimum operating conditions for industrial dye wastewater treatment using adaptive heuristic criticism pH control[J]. Environmental Management Journal, 2007, 85:404-414.
[11] Moosvi S, Madamwar D. An integrated process for the treatment of CETP wastewater using coagulation, anacrobic and acrobic process[J].Bioresource Technology Journal, 2007, 98:3 384-3 392.
[12] Xie B, Dai X C, Xu Y T, et al. Cause and pre-alarm control of bulking and foaming by microthrix parvicella—A case study in triple oxidation ditch at a waste water treatment plant[J]. Journal of Hazardous Material, 2007, 143: 184-191.
[13] Ba Yadong, Wang Xiaoyuan. Research on key points of environmental impact assessment for municipal wastewater treatment plant project[J]. Yangtze River, 2012, 43(3):65-67.[巴亚东,王晓媛.城镇污水处理厂项目环境影响评价重点的研究[J].人民长江,2012,43(3): 65-67.]
[14] Ke Chongyi, Shi Shuqian. Study on existing problems in sewage treatment plants[J]. Environmental Protection, 2000, (2):21-22.[柯崇宜, 石淑倩. 现有污水处理厂存在的若干问题探讨[J].环境保护, 2000, (2):21-22.]
[15] Falletti L, Conte L. Upgrading of activated sludge wastewater treatment plants with hybrid moving-bed biofilm reactors[J]. Industrial & Engineering Chemistry Research, 2007, 46(21):6 656-6 660.
[16] Sadeghpoor M, Hosseini B, Najafpour G D, et al. Assessment of wastewater treatment plant’s performance in amol industrial park[J]. American-Eurasian Journal Agriculture and Environmental Science, 2009, 5(5): 707-711.
[17] Huang Shujuan, Chen Xiaoquan, Zeng Xiaoxue. The researching of small towns’ sewage treatment plant location select based on AHP-factor analysis evaluation model[J]. Chinese & Overseas Architecture, 2012, (4): 93-95.[黄淑娟, 陈小泉, 曾小雪. 基于AHP-因子分析评价模型的小城镇污水处理厂选址研究[J].中外建筑,2012, (4):93-95.]
[18] Zhang Haiyan, Jin Meizhu. A case study on alternate in EIA of municipal sewage treatment plant[J]. Urban Environment & Urban Ecology, 2001, 14(2):39-40.[张海燕,靳美珠.城市污水处理厂EIA中替代方案实例分析[J].城市环境与城市生态,2001, 14(2): 39-40.]
[19] Long Tengrui, Guo Jinsong, Dang Qingping. A study on critical distance method for optimization of a city’s sewage treatment system[J]. China Water & Wastewater,1998, 14(1):16-18.[龙腾锐,郭劲松,党清平.临界距离优化城市污水处理系统研究[J].中国给水排水,1998, 14(1): 16-18.]
[20] Zhao Y W, Qin Y, Chen B, et al. GIS-based optimization for the locations of sewage treatment plants and sewage outfalls—A case study of Nansha district in Guangzhou city, China[J]. Communications in Nonlinear Science and Numerical Simulation,2009, 14:1 746-1 757.
No Suggested Reading articles found!