Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2014, Vol. 29 Issue (3): 380-387    DOI: 10.11867/j.issn.1001-8166.2014.03.0380
Orginal Article     
Effects of Sunshine-shield of Qinghai-Tibet Railway Land Bridge on the Solar Radiation of Underbridge and Surrounding Permafrost
Xia Lijiang1, 2, Zhou Guoqing1, 3, Liu Yuyi3, Wang Tao3, Yin Qixiang3
1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221008, China;
2. School of Food Engineering, Ludong University, Yantai 264025, China;
3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China
Download:  HTML  PDF (7058KB) 
Export:  BibTeX | EndNote (RIS)      

Based on the change law of solar radiation intensity and shadow of land bridge variation with time, the mathematical model expressing of the relationship among time, solar radiation intensity,solar position and shadow track was established. The effects of the sunshine-shield of land bridge floor were studied using the model. Direct rate concept was proposed to define the proportion of solar direct radiation energy of the surrounding permafrost. The results show that height, direction and width of land bridge are the major influence factors on the solar radiation of underbridge and surrounding permafrost. With the increase of the height, shading scope and direct rate of sunshade center also increase; with the increase of the width, direct rate of the surrounding permafrost decrease; there was obvious asymmetry distribution of permafrost surface direct rate, especially for the east-west bridge. Sunshine-shield of land bridge can effectively reduce the sun radiation heat of the surrounding permafrost and also cause non-uniform distribution of solar radiation on permafrost surface around piles, which should be concerned in the stability estimation of land bridge.

Key words:  Sunshine-shield      Permafrost      Land bridge     
Received:  07 December 2013      Published:  10 March 2014
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Liu Yuyi
Zhou Guoqing
Wang Tao
Yin Qixiang
Xia Lijiang

Cite this article: 

Xia Lijiang, Zhou Guoqing, Liu Yuyi, Wang Tao, Yin Qixiang. Effects of Sunshine-shield of Qinghai-Tibet Railway Land Bridge on the Solar Radiation of Underbridge and Surrounding Permafrost. Advances in Earth Science, 2014, 29(3): 380-387.

URL:     OR

[1] Ma Wei, Niu Fujun,Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2012, 27(11): 1 185-1 191.[马巍,牛富俊,穆彦虎.青藏高原重大冻土工程的基础研究[J].地球科学进展, 2012, 27(11):1 185-1 191.]
[2] Hu Zeyong, Cheng Guodong, Gu Lianglei, et al. Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang railway[J]. Advances in Earth Science,2006,21(12): 1 304-1 313.[胡泽勇,程国栋,谷良雷,等. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展,2006,21(12): 1 304-1 313.]
[3] Cheng Guodong. The impact of local factors on permafrost distribution and its inspiring for design Qinghai-Xizang railway[J]. Science in China (Series D), 2003, 33(6): 602-607.[程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J]. 中国科学:D辑, 2003, 33(6): 602-607.]
[4] Cheng Guodong. A roadbed cooling approach for the construction of Qinghai-Tibet railway[J]. Cold Regions Science and Technology, 2005, 42(2): 169-176.
[5] Lai Y M, Zhang S J, Zhang L X, et al. Adjusting temperature distribution under the south and north slopes of embankment in permafrost regions by the ripped-rock revetment[J]. Cold Regions Science and Technology, 2004, 39(1): 67-79.
[6] Chou Y L, Sheng Y, Zhu Y P. Study on the relationship between the shallow ground temperature of embankment and solar radiation in permafrost regions on Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2012, 78: 122-130.
[7] Chou Y L, Yu S, Wei Z M, et al. Calculation of temperature differences between the sunny slopes and the shady slopes along railways in permafrost regions on Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2008, 53(3): 346-354.
[8] Feng Wenjie,Sun Zhizhong,Li Guoyu, et al. Radiation effect of shading boardon embankment side slope on Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2011,33(4):778-783.[冯文杰,孙志忠,李国玉,等. 青藏高原路堤边坡遮阳措施辐射影响分析[J]. 冰川冻土, 2011, 33(4): 778-783.]
[9] Feng Wenjie, Ma Wei.An experimental study of the effect of awning along the Qinghai-Tibet railway[J]. Journal of Glaciology and Geocryology,2006, (1): 108-115.[冯文杰,马巍. 青藏铁路遮阳板措施应用效果观测研究[J]. 冰川冻土,2006, (1): 108-115.]
[10] Feng W, Sun Z, Wen Z, et al. Application study of the awning measure to obstruct solar radiation in permafrost regions on the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2012, 4(2): 121-126.
[11] Feng Wenjie, Ma Wei, Zhang Luxin, et al. Application study of awning to roadway engineering in permafrost regions[J].Chinese Journal of Geotechnical Engineering, 2003, 25(5):567-570.[冯文杰,马巍,张鲁新,等. 遮阳棚在寒区道路工程中的应用研究[J]. 岩土工程学报,2003, 25(5): 567-570.]
[12] Niu Fujun, Xu Zhiying, Ge Jianjun, et al.Engineering effects of the sunshine-shield roadbed of the Qinghai-Tibet railway in permafrost regions[J]. Journal of Glaciology and Geocryology,2010,32(2): 325-334.[牛富俊,徐志英,葛建军,等. 青藏铁路遮阳棚路基试验工程效果实测研究[J]. 冰川冻土,2010, 32(2): 325-334.]
[13] Xiao Jianzhang, Lai Yuanming, Zhang Xuefu, et al. Three-dimensional temperature character analysis of the land bridge on the Qinghai-Tibet railway[J].Journal of Glaciology and Geocryology, 2004, 26(4): 426-434.[肖建章,赖远明,张学富,等. 青藏铁路旱桥的三维温度特性分析[J]. 冰川冻土,2004, 26(4): 426-434.]
[14] Ma W, Cheng G D, Wu Q B. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad[J]. Cold Regions Science and Technology, 2009, 59(1): 3-11.
[15] Bie Xiaoyong. Study on the Pile-soil Interface and Pile Stability of Land Bridges in High-Temperature Permafrost Regions of Qinghai-Tibet Railway[D].Xuzhou: China University of Mining & Technology,2005.[别小勇. 高温多年冻土桩土界面及青藏铁路旱桥桩基稳定性研究[D]. 徐州: 中国矿业大学, 2005.]
[16] Fu Jin,Ma Junyi,Yuan Kun. Study on replacing road with bridge in warm and ice-rich permafrost regions along Qinghai-Tibet highway[J]. Subgrade Engineering,2013,(4): 62-65.[符进,马君毅,袁堃. 青藏公路高温高含冰量多年冻土地区以桥代路工程研究[J]. 路基工程, 2013,(4): 62-65.]
[17] Zheng Pengfei, Lin Dajun, Liu Xiaoyang, et al. Reversing effect of building lighting technology based on shadow track line[J].Journal of East China University of Science and Technology (Natural Science Edition), 2010, (3): 458-463.[郑鹏飞,林大钧,刘小羊,等. 基于影子轨迹线反求采光效果的技术研究[J]. 华东理工大学学报:自然科学版, 2010, (3): 458-463.]
[18] Xiao Dengpan, Tao Fulu, Moiwo Juana P. Research progress on surface albedo under global change[J]. Advances in Earth Science, 2011, 26(11): 1 217-1 224.[肖登攀, 陶福禄, Moiwo Juana P.全球变化下地表反照率研究进展[J].地球科学进展,2011,26(11): 1 217-1 224.]
[19] Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of Earth surface processes: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建,周成虎,邵明安,等.地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419. ]
[20] Niu Fujun, Dong Cheng, Lin Zhanju, et al. Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet highway[J]. Advances in Earth Science, 2013, 28(6): 695-702.[牛富俊,董晟,林战举, 等.青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.]
No Suggested Reading articles found!