Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2014, Vol. 29 Issue (3): 361-368    DOI: 10.11867/j.issn.1001-8166.2014.03.0361
Orginal Article     
Relationships Among the Distributions of Acrylic Acid, Marine Environmental Factors and Chlorophyll a in the Yellow Sea Cold Water Mass in Summer
Liu Chunying, Liu Huanhuan, Yang Guipeng, Wang Lili, Zhang Shenghui
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF (1830KB) 
Export:  BibTeX | EndNote (RIS)      

Acrylic acid (AA), together with the major biogenic sulfur compound dimethylsulfide (DMS), is microbially degraded from dimethylsulphoniopropionate (DMSP), which is one of the major sulfur compounds in the marine environment. Distributions of AA concentrations and related parameters in the Yellow Sea Cold Water Mass was studied during August, 2011. The results showed that the concentrations of AA ranged from 0 to 0.208 μmol/L in the surface water, with an average of (0.081±0.075) μmol/L. The high values appeared in the southeast part of this area, which was influenced by the Changjiang diluted water. An increasing trend from the north to the south of AA concentrations was basically consistent with that of chlorophyll a (Chl-a), suggesting that AA in this area was mainly the product of microbial cleavage of DMSP. There was a significant negative relationship between AA concentrations and temperature in the surface water. The vertical profile of AA concentrations were presented as follows: Middle>Bottom>Surface,which could be attributed to the combined effects of AA production from phytoplankton and AA consumption by aquatic bacteria. Concentrations of AA showed no obvious correlation with those of DMSP or DMS during this cruise, and they were far higher than concentrations of DMS. The average ratio of AA/DMS was 106∶ 1, and production of AA from the cleavage of DMSP was about 66.5% according to observed data. The average ratio of AA/Chl-a was found to be 126.6 mmol/g. It was one order of magnitude higher than that of DMSP/Chl-a and two orders of magnitude higher than that of DMS/Chl-a.

Key words:  Acrylic acid (AA)      The Yellow Sea Cold Water Mass      Dimethylsulfide (DMS)      Characteristic of distribution     
Received:  16 September 2013      Published:  10 March 2014
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Liu Chunying
Liu Huanhuan
Zhang Shenghui
Yang Guipeng
Wang Lili

Cite this article: 

Liu Chunying, Liu Huanhuan, Yang Guipeng, Wang Lili, Zhang Shenghui. Relationships Among the Distributions of Acrylic Acid, Marine Environmental Factors and Chlorophyll a in the Yellow Sea Cold Water Mass in Summer. Advances in Earth Science, 2014, 29(3): 361-368.

URL:     OR

[1] Yang H F, Mctaggart A R, Davidson A. Primary productivity of acrylic acid and dimethylsulfide during a summer bloom of phaeocystis pouchetii in antarctic coastal water[J]. Antarctic Research, 1992, 4: 36-42.
[2] Gibson J A E, Swadling K M, Burton H R. Acrylate and Dimethylsulfoniopropionate (DMSP) concentrations during an Antarctica phytoplankton bloom[J]. New Sources of Reduced Sulfur Compounds, 1996, 19: 213-222.
[3] Bajt O, Sket B, Faganeli J. The aqueous photochemical transformation of acrylic acid[J]. Marine Chemistry, 1997, 58: 255-259.
[4] González J M, Johnson A W B, Vila-Costa M, et al. Genetics and molecular features of bacterial Dimethylsulfonio Propionate (DMSP) and Dimethylsulfide (DMS) transformations[M]∥Kenneth N T, ed. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer-Verleg,2010:1 202-1 209.
[5] Yang Guipeng, Jing Weiwen, Lu Xiaolan. Recent progress in the study of oceanic Dimethylsulfoniopropionate[J]. Periodical of Ocean University of China, 2004, 34(5): 854-860.[杨桂朋,景伟文,陆小兰. 海洋中DMSP 的研究进展[J]. 中国海洋大学学报, 2004, 34(5): 854-860.]
[6] Wang Lili, Liu Chunying, Yang Guipeng, et al. Study progress on acrylic acid in ocean[J]. Marine environmental Science, 2012, 31(2): 295-299.[王莉莉,刘春颖,杨桂朋,等. 海洋中丙烯酸的研究进展[J]. 海洋环境科学, 2012, 31(2): 295-299.]
[7] Sieburth J M. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals[J]. Journal of Bacteriol, 1961, 82: 72-79.
[8] Sieburth J M. Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters[J]. Science, 1960, 132: 676-677.
[9] Slezak D M, Puskaric S, Herndl G J. Potential role of acrylic acid in bacterioplankton communities in the sea[J]. Marine Ecology Progress Series, 1994, 105: 191-197.
[10] Noordkamp D J B, Schotten M, Gieskes W W C. High acrylate concentrations in the mucus of Phaeocystis globosa colonies[J]. Aquatic Microbial Ecology, 1998, 16: 45-52.
[11] Evans C, Malin G. Infectious titers of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethylsulfide and acrylic acid[J]. American Society of Limnology and Oceanography, 2006, 51(5): 2 468-2 471.
[12] Wang Zhaohui, Yin Yiwei, Chen Shanwen, et al. Studies on acute toxicity of acrylic acid and its esters to aquatic organisms[J]. Journal of Jinan University (Natural Science), 2002, 5(23): 76-79.[王朝晖,尹伊伟,陈善文,等. 丙烯酸及丙烯酯对水生生物的急性毒性[J]. 暨南大学学报:自然科学版, 2002, 5(23): 76-79.]
[13] Andreae M O, Ferek R J, Bermond F, et al. Dimethylsulfide in the marine atmosphere[J]. Journal of Geophysical Research, 1985, 90: 12 891-12 900.
[14] Lovelock J E, Maggs R J, Rasmussrn R A. Atmospheric dimethylsulphide and the natural sulpher cycle[J]. Nature, 1972, 237: 452-453.
[15] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle[J]. Marine Chemistry, 1990, 30: 1-29.
[16] Zhang Miming, Chen Liqi, Wang Jianjun. Advances in studying the sea-air dimethysulphide exchange process in the southern ocean[J]. Advances in Earth Science, 2013, 28(9): 1 015-1 024.[张麋鸣,陈立奇,汪建君.南大洋二甲基硫海—气交换过程研究进展[J].地球科学进展,2013, 28(9): 1 015-1 024.]
[17] Sun Xiangping. Marine Areas of China Offshore[M]. Beijing: Ocean Press of China, 2006: 376.[孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006: 376.]
[18] Wang Baodong. Characteristics of variations and interrelations of biogenic elements in the Huanghai Sea cold water mass[J]. Acta Oceanologica Sinica, 2000, 6(22): 47-54.[王保栋. 黄海冷水域生源要素的变化特征及相互关系[J]. 海洋学报,2000, 6(22): 47-54.]
[19] Liu Chunying, Wang Lili, Yang Guipeng, et al. Determination of acrylic acid in seawater by high performance liquid chromatography and its application[J]. Acta Oceanologica Sinica, 2013, 35(1): 172-176.[刘春颖,王莉莉,杨桂朋,等. 海水中丙烯酸的高效液相色谱法建立及应用[J]. 海洋学报,2013, 35(1): 172-176.]
[20] Zhang H H, Yang G P, Liu C Y, et al. Seasonal variations of Dimethylsulfide (DMS) and Dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer and subsurface water of Jiaozhou Bay and its adjacent area[J]. Acta Oceanologica Sinica, 2009, 28(2):1-14.
[21] Jeffrey S W, Mantoura R F C, Wrigh T S W.Phytoplankton Pigments in Oceanography: Guidenlines to Modern Methods[M]. Paris: UNESCO, 1997.
[22] Wei Qinsheng, Fu Mingzhu, Li Yan,et al.Observation of the seasonal evolution of DO,chlorophyll a maximum phenomena and nutrient accumulating in the southern Huanghai(Yellow)Sea cold water mass area[J].Acta Oceanologica Sinica,2013, 35(3): 142-154.[韦钦胜,傅明珠,李艳,等. 南黄海冷水团海域溶解氧和叶绿素最大现象值及营养盐累积的季节演变[J].海洋学报,2013,35(3):142-154.]
[23] Gong Xiang, Shi Jie, Gao Huiwang. Subsurface chlorophyll maximum in ocean: Its characteristics and in-fluencing factors[J]. Advances in Earth Science, 2012, 27(5):539-548.[宫响,史洁,高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J].地球科学进展,2012, 27(5): 539-548.]
[24] Li Hongbo, Xiao Tian, Ding Tao, et al. The distribution of bacterioplankton in the Yellow Sea cold water mass[J]. Acta Ecologica Sinica, 2006, 4(26): 1 012-1 020.[李洪波, 肖天, 丁涛, 等. 浮游细菌在黄海冷水域中的分布[J]. 生态学报, 2006, 4(26): 1 012-1 020.]
[25] Liss P S, Malin G, Turner S M, et al. Dimethyl sulphide and Phaeocystis: A review[J]. Journal of Marine Systems, 1994, 5: 41-53.
[26] Yang G P, Zhang H H, Zhou L M, et al. Temporal and spatial variations of Dimethylsulfide (DMS) and Dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea[J]. Continental Shelf Research, 2011, 31: 1 325-1 335.
[27] Yang G P, Jing W W, Li L, et al. Distribution of Dimethylsulfide and Dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring[J]. Journal of Marine System, 2006, 62: 22-34.
No Suggested Reading articles found!