Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2012, Vol. 27 Issue (6): 678-685    DOI: 10.11867/j.issn.1001-8166.2012.06.0678
Sensitivity and Parameters Optimization Method of Soil Parameters to Soil Moisture in Common Land Model
Zhang Tian1,2,Huang Chunlin2,Shen Huanfeng1
1. School of Resource and Environmental Science,Wuhan University,Wuhan430079, China;
2. Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou730000, China
Download:  PDF (23068KB) 
Export:  BibTeX | EndNote (RIS)      

The sensitivity analysis of soil moisture to soil texture (sand and clay) was studied by using the common land model and meteorological forcing data from January 1, 2008 to September 31, 2009 at the Arou Observation Station in Heihe river basin. The SCEUA algorithm was utilized to optimize the soil texture and soil hydraulic parameters separately and the impact of the result of soil moisture with different strategies was analyzed. The result shows that surface moisture is quite sensitive to soil texture, the sensitivity coefficients are larger than 0.45, and the sand percentage is more significant to the soil moisture; SCE-UA algorithm is used to optimize the soil texture or soil hydraulic parameters which can effectively improve the accuracy of soil moisture simulation. However, optimizing soil hydraulic parameters will likely lead to the apperance of  the phenomenon of equifinality for different parameters, while optimizingsoil texture can constrain the range of soil hydraulic parameters and make them more reasonable.

Key words:  SCE-UA algorithm      Soil texture      Soil hydraulic parameter      Soil moisture      Sensitivity analysis     
Received:  04 January 2012      Published:  10 June 2012
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors

Cite this article: 

Zhang Tian,Huang Chunlin,Shen Huanfeng. Sensitivity and Parameters Optimization Method of Soil Parameters to Soil Moisture in Common Land Model. Advances in Earth Science, 2012, 27(6): 678-685.

URL:     OR

[1]Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects[J].Progress in Natural Science, 2007, 17(8): 881-892.[李新,黄春林,车涛,等. 中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展, 2007, 17(8): 881-892.]
[2]Clapp R B, Hornberger G B. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 1978, 14(4): 601-604.
[3]Huang Guanhua, Zhan Weihua. Modeling soil water retention curve with fractal theory[J]. Advances in Water Science, 2002, 13(1): 55-60.[黄冠华,詹卫华. 土壤水分特性曲线的分形模拟[J]. 水科学进展, 2002, 13(1): 55-60.]
[4]Cosby B, Hornberger G B, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690.
[5]Fares A, Alva A, Nkedi-kizza P, et al. Estimation of soil hydraulic properties of a sandy soil using capacitance probes and guelph permeameter1[J]. Soil Science, 2000, 165(10): 768-777.
[6]Farouki O T. The thermal properties of soils in cold regions[J]. Cold Regions Science and Technology, 1981, 5(1): 67-75.
[7]Dickinson R E. Biosphere/Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model[R]. National Center for Atmospheric Research, 1986.
[8]Batjes N H. A world dataset of derived soil properties by FAO-UNESCO soil unit for global modeling[J]. Soil Use and Management,1997, 13(1): 9-16. 
[9]US Department of Agriculture. State Soil Geographic (STATSGO) Database of Arizona[M]. State College, PA: Penn State University Earth Systems Science Center, Natural Resources Conservation Service, 1994.
[10]Ran Youhua, Li Xin, Lu Ling. Accuracy evaluation of the four remote sensing based land cover products over China[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 490-500.[冉有华,李新,卢玲. 四种常用的全球1km覆盖数据中国区域的精度评价[J].冰川冻土, 2009, 31(3): 490-500.]
[11]Chandra G, Zhiliang Z, Bradley R. A comparative analysis of the global land cover 2000 and MODIS land cover data sets[J]. Remote Sensing of Environment, 2005,94(1): 123-132.
[12]Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large models[J]. Environmental Modelling & Software, 2007, 22(10): 1 509-1 518.
[13]Fu X, Chu X F, Tan G M. Sensitivity analysis for an infiltration-runoff model with parameter uncertainty[J]. Journal of Hydrologic Engineering, 2010, 15(9): 243-251.[14]Pappenberger F, Beven K J, Ratto M, et al. Multi-method global sensitivity analysis of flood inundation models[J]. Advances in Water Resources, 2008, 31 (1):1-14.
[15]Steinbrunn M, Moerkotte G, Kemper A. Heuristic and randomized optimization for the join ordering problem[J]. The VLDB Journal, 1997, 6(3):8-17.
[16]Termansen M, Colin J M, Christopher D P. The use of genetic algorithms and Bayesian classification to model species distributions[J]. Ecological Modelling, 2006, 192 (3/4):410-424.
[17]Gill M K, Kaheil Y H, Khalil A, et al. Multiobjective particle swarm optimization for parameter estimation in hydrology[J]. Water Resources Research,2006, 42 (7) : 1-14.
[18]Dai Y J, Zeng X, Dickinson R E, et al. The common land model[J]. Bulletin of the American Meteorological Society,2003, 84(8): 1 013-1 024.
[19]Dai Y J, Dickinson R E, Wang Y P. A two-big-leaf model for canopy temperature, photosynthesis and stomatal conductance[J]. Journal of Climate, 2004, 17(12): 2 281-2 299.
[20]Bonan G B. Land Surface Model (LSM version 1.0) for Ecological, Hydrological and Atmospheric Studies: Technical Description and Users Guide[R]. National Center for Atmospheric Research, 1996.
[21]Dai Y J, Zeng Q C. A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments[J]. Advances in Atmospheric Sciences, 1997, 14(4): 433-460.
[22]Dai Y J, Zeng X, Dickinson R E. Common Land Model (CLM): Technical Documentation and User′s Guide [R]. Atlanta: Georgia Institute of Technology, 2001.
[23]Helton J C, Johnson J D, Sallaberry C, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering & System Safety, 2006, 91(10/11): 1 175-1 209.
[24]Annan J. Modeling under uncertainty: Monte Carlo methods for temporally varying parameters[J]. Ecological Modeling, 2001, 136(2/3): 297-302.
[25]Decker K M. The Monte Carlo method in science and engineering: Theory and application[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1/3): 463-483.
[26]Saltelli A, Annoni P, Azzini I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index [J]. Computer Physics Communications, 2010, 181(2): 259-270.
[27]Saltelli A, Ratto M, Andres T, et al. Global Sensitivity Analysis: The Primer[M].Wiley Online Library,2008:25.
[28]Duan Q Y, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research, 1992, 28(4): 1 015-1 031.
[29]Duan Q Y, GuptaV K, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications 1993, 76(3): 501-521.
[30]Duan Q Y, Sorooshian S, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994, 158(3/4): 265-284.
[31]Tang Yunyi, Luan Chengmei. Application of SCE-UA method in calibrating parameters of Xin′anjiang Model and TOPMODEL[J]. Journal of China Hydrology, 2007, 27(6): 33-35.[唐运忆,栾承梅. SCE—UA 算法在新安江模型及TOPMODEL参数优化应用中的研究[J]. 水文, 2007, 27(6): 33-35.]
[32]Van L M, Veith T L, Bosch D D, et al. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds[J]. Journal of Hydrologic Engineering, 2007, 12(2): 173-190.
[33]Ajami K N, Gupta H, Wagener T, et al. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system[J]. Journal of Hydrology, 2004, 298(1/4): 112-135.
[34]Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectivesand experiment design[J]. Advances in Earth Science, 2008, 23(9): 897-914.[李新,马明国,王建,等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展, 2008, 23(9): 897-914.]
[35]Wang Jian, Che Tao, Zhang Lixin, et al. The cold regions hydtrological remote sensing and ground-based synchronous observation experiment in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 189-197.[王建,车涛,张立新,等. 黑河流域上游寒区水文遥感—地面同步观测试验[J]. 冰川冻土, 2009, 31(2): 189-197.]
[36]Li X, Li X W, Li Z Y, et al. Watershed allied telemetry experimental research[J].Journal of Geophysical Research, 2009, 114:D22103, doi: 10.1029/2008JD011590.
[37]Zhao T, Zhang L, Jiang L, et al. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery[J]. Hydrological Processes, 2011,25(11):1 704-1 716.

No Suggested Reading articles found!