Please wait a minute...
img img
Adv search
Advances in Earth Science  2016, Vol. 31 Issue (11): 1182-1196    DOI: 10.11867/j.issn.1001-8166.2016.11.1182
Climatic Character of Marine Isotope Stage (MIS) 5e in the Representative Regions of the World: A Review
Pei Qiaomin1, Ma Yuzhen1, *, Hu Caili1, Li Dandan2, Guo Chao1, Liu Jierui1
1.State Key Laboratory of Earth Surface Process and Resource Ecology/Key Laboratory of Environmental Change and Natural Disaster,Ministry of Education,Beijing Normal University,Beijing 100875,China;
2.College of Resource Science and Technology, Beijing Normal University, Beijing 100875, China
Download:  HTML  PDF (5113KB) 
Export:  BibTeX | EndNote (RIS)      

The Last Interglacial or Marine Isotope Stage (MIS) 5e, is of great interest because it serves as an analog for the Holocene. The climate change and duration during Marine isotope stage (MIS) 5e are considerably well understood for recent and future climate. Despite great interest in this subject over many years, a number of issues concerning the climate circumstances of MIS 5e are by no means resolved. We analyzed 35 published palaeoclimate records with reliable chronologies and robust proxies in typical region of the world to evaluate climate change during MIS 5e. These data indicate that: ① The duration of this warm phase is thought to range from (128±2) ka to (116±2) ka. The climate of MIS 5e was likely relatively stable with a number of abrupt, weak amplitude, cool and/or arid events. And the difference between regions is noticeable for the occurrence, amplitude, onset and duration of these events. For example, marine records from the North Atlantic indicate that the climate of MIS 5e was relatively stable, however the records from Norwegian sea show that the climate of MIS 5e had a significant changes at the beginning and cold event in the Mid-Eemian; The δ18O, δD and CH4 in the ice cores from Greenland and Antarctica imply that climate was relatively stable during the last interglacial period, while in Europe from the north to the south the duration of this phase became shorter and the intensity of climatic events became stronger. In addition, the climatic conditions of MIS 5e reconstructed by climate proxy from China are various and have the subject of some controversy. ②The global climate response to the insolation forcing would have been uniform on suborbital timescale. Nevertheless, as a result of regional sundry climatic forcing factors, global millennial-scale/century-scale climate oscillations were marked by significant local features during stage 5e. ③ Based on the better chronological controls, the estimation of climate parameters, the high-resolution climate records, and precise knowledge of the phase relationship between climate changes in global, the earlier depiction for climate circumstances and environment change during Marine Isotope Stage 5e should be refined and our understanding of the climate dynamics and mechanism and climate modelling should be improved.

Key words:  Marine oxygen Isotope Stage 5e (MIS 5e)      Cold event.      Climate change      Proxy     
Received:  22 July 2016      Published:  20 November 2016

Project supported by the National Natural Science Foundation of China “Study on the evolvement of the Ancient River Lakes and the evolution process of aeolian sand landforms in Mu Us Desert” (No.41330748); the National Natural Science Foundation Surface Project of China “High resolution pollen records and environmental changes in the Late Quaternary of the Mu Us Desert”(No.41571186)

Corresponding Authors:  Ma Yuzhen(1957-), female, Taikang City, He’nan Province, Professor. Research areas include environmental   
About author:  Pei Qiaomin(1991-), female, Tangshan City, Hebei Province, Master student. Research areas include environmental
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Ma Yuzhen
Pei Qiaomin
Hu Caili
Li Dandan
Guo Chao
Liu Jierui

Cite this article: 

Pei Qiaomin, Ma Yuzhen, Hu Caili, Li Dandan, Guo Chao, Liu Jierui. Climatic Character of Marine Isotope Stage (MIS) 5e in the Representative Regions of the World: A Review. Advances in Earth Science, 2016, 31(11): 1182-1196.

URL:     OR

[1] Shen Ji. Reconstructing Quaternary Environments[M]. Beijing:Science Press, 2010.
. 北京: 科学出版社, 2010.]
[2] Mangerud J, Sønstegaard E, Sejrup H P. Correlation of the Eemian (interglacial) stage and the deep-sea oxygen-isotope stratigraphy[J]. Nature , 1979, 277(5 693): 189-192.
[3] Kopp R E, Simons F J, Mitrovica J X, et al . Probabilistic assessment of sea level during the last interglacial stage[J]. Nature , 2009, 462(7 275): 863-867.
[4] Romero O E, Swann G E A, Hodell D A, et al . A highly productive Subarctic Atlantic during the Last Interglacial and the role of diatoms[J]. Geology , 2011, 39(11): 1 015-1 018.
[5] Bauch H A, Kandiano E S. Evidence for early warming and cooling in North Atlantic surface waters during the last interglacial[J]. Paleoceanography , 2007, 22(1): 1-11.
[6] NEEM Community Members. Eemian interglacial reconstructed from a Greenland folded ice core[J]. Nature , 2013, 493(7 433): 489-494.
[7] NGICP members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature , 2004, 43(7 005): 147-151.
[8] Dansgaard W S, Johnsen S J, Clausen H B, et al . Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature , 1993, 364(6 434): 218-220.
[9] Grootes P M, Stulver M, White J W C, et al . Comparison of oxygen isotope records from the GISP2 and GRIP Greenland Ice cores[J]. Nature , 1993, 366(6 455): 552-554.
[10] Oppo D W, Horowitz M, Lehman S J. Marine core evidence for reduced deep water production during Termination Ⅱ followed by a relatively stable substage 5e (Eemian)[J]. Paleoceanography , 1997, 12(1): 51-63.
[11] Galaasen E V, Ninnemann U S, Irvali N, et al . Rapid reductions in North Atlantic deep water during the peak of the last interglacial period[J]. Science , 2014, 343(6 175): 1 129-1 132.
[12] Irvali N, Ninnemann U S, Galaasen E V, et al . Rapid switches in subpolar North Atlantic hydrography and climate during the last interglacial (MIS 5e)[J]. Paleoceanography , 2012, 27(2): 1-16.
[13] Rasmussen T L, Balbon E, Thomsen E, et al . Climate records and changes in deep outflow from the Norwegian Sea~150-55 ka[J]. Terra Nova , 1999, 11(2/3): 61-66.
[14] Adkins J F, Boyle E A, Keigwin L, et al . Variability of the North Atlantic thermohaline circulation during the last interglacial period[J]. Nature ,1997,390(6 656): 154-156.
[15] Heusser L, Oppo D. Millennial- and orbital-scale climate variability in southeastern United States and in the subtropical Atlantic during Marine Isotope Stage 5: Evidence from pollen and isotopes in ODP site 1059[J]. Earth and Planetary Science Letters , 2003, 214(3/4): 483-490.
[16] Maslin M A, Sarnthein M, Knaack J J. Subtropical Eastern Atlantic climate during the Eemian[J]. Science of Nature , 1996, 83(3): 122-126.
[17] Schwab C, Kinkel H, Weinelt M, et al . A coccolithophore based view on paleoenviromental changes in the open ocean mid-latitude North Atlantic between 130 and 48 ka BP with special emphasis on MIS 5e[J]. Quaternary Science Reviews , 2013, 81: 35-47,doi:10.1016/j.quascirev.2013.09.021.
[18] Goñi M F S, Eynaud F, Turon J L, et al . High resolution palynological record off the Iberian margin: Direct land-sea correlation for the last interglacial complex[J]. Earth and Planetary Science Letters , 1999, 171(1): 123-137.
[19] Cortijo E, Duplessy J C, Labeyrie L, et al . Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth[J]. Nature , 1994, 372(6 505): 446-449.
[20] Bauch H A, Kandiano E S, Helmke J, et al . Climatic bisection of the last interglacial warm period in the Polar North Atlantic[J]. Quaternary Science Reviews , 2011, 30 (15/16): 1 813-1 818.
[21] Bauch H A, Erlenkeuser H. A “critical” climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea[J]. Polar Research , 2008, 27(2): 135-151.
[22] Helmens K F, Salonen J S, Plikk A, et al . Major cooling intersecting peak Eemian Interglacial warmth in northern Europe[J]. Quaternary Science Review , 2015, 122: 293-299,doi:10.1016/j.quascirev.2015.05.018.
[23] Sirocko F, Seelos K, Schaber K, et al . A late Eemian aridity pulse in central Europe during the last glacial inception[J]. Nature , 2005, 436(7 052): 833-836.
[24] Kühl N, Litt T, Schölzel C, et al . Eemian and Early Weichselian temperature and precipitation variability in northern Germany[J]. Quaternary Science Review , 2007, 26(25/28): 3 311-3 317.
[25] Allen J R M, Huntely B. Last Interglacial palaeovegetation, palaeoenvironments and chronology: A new record from Lago Grande di Monticchio, southern Italy[J]. Quaternary Science Reviews , 2009, 28(15/16): 1 521-1 538.
[26] Tzedakis P C, Frogley M R, Heaton T H E. Duration of last interglacial conditions in Northwestern Greece[J]. Quaternary Research , 2002, 58(1): 53-55.
[27] Tzedakis C. Timing and duration of last interglacial conditions in Europe: A chronicle of a changing chronology[J]. Quaternary Science Review , 2003, 22(8/9): 763-768.
[28] Yu Suhua, Zhu Zhaoyu, Li Bingyuan, et al. Paleoclimate since 230ka records by iron in the core of Tianshuihai Lake, Tibetan Plateau[J]. Marine Geology and Quaternary Geology , 1998, 18(3): 63-68.
. 海洋地质与第四纪地质, 1998, 18(3): 63-68.]
[29] Zhou H Y, Zhu Z Y. Oxygen isotopic composition of lacustrine carbonates since 130 ka BP from a Tianshuihai Lake core, Tibet: An overall increasing δ 18 O trend and its implications[J]. Journal of Asian Earth Sciences , 2002, 20(3): 225-229.
[30] Yao Tandong, Thompson L G, Shi Yafeng, et al . Research about climate change since the last interglacial from record in ice core of Guliya[J]. Science in China ( Series D ), 1997, 27(5): 447-452.
. 中国科学:D辑, 1997, 27(5): 447-452.]
[31] Lu H Y, Vandenberghe J, Miao X D, et al . Evidence for an abrupt climatic reversal during the Last Interglacial on the northeast Qinghai-Tibetan Plateau[J]. Quaternary International , 2006, 154/155(5): 136-140.
[32] Fang X M, Li J J, Banerjee S K, et al . Millennial-scale climatic change during the last interglacial period: Superparamagnetic sediment proxy from paleosol S1, western Chinese Loess Plateau[J]. Geophysical Research Letters , 1999, 26(16): 2 485-2 488.
[33] Fang Xiaomin, Dai Xuerong, Li Jijun, et al . Abruptness and instability of Asian monsoon: An example from soil genesis during the last interglacial[J]. Science in China ( Series D ), 1996, 26(2): 154-160.
. 中国科学:D辑, 1996, 26(2): 154-160.]
[34] Du S H, Li B S, Niu D F, et al . Age of the MGS5 segment of the Milanggouwan stratigraphical section and evolution of the desert environment on a kiloyear scale during the last interglacial in China’s Salawusu River Valley: Evidence from Rb and Sr contents and ratios[J]. Chenie der Erde-Geochemistry , 2011, 71(1): 87-95.
[35] Du S H, Li B S, Chen M H, et al . Kiloyear-scale climate events and evolution during the last interglacial, Mu Us Desert, China[J]. Quaternary International , 2012, 263(10): 63-70.
[36] Li B S, Zhang D D, Wen X H, et al . A Multi-cycle climatic fluctuation record of the Last Interglacial Period: Typical stratigraphic section in the Salawusu River Valley on the Ordos Plateau, China[J]. Acta Geologica Sinica , 2005, 79(3): 398-404.
[37] An Z S, Porter S C. Millennial-scale climatic oscillations during the last interglaciation in central China[J]. Geology , 1997, 25(7): 603-606.
[38] Wang Y J, Cheng H, Edwards R L, et al . Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature , 2008, 451(7 182): 1 090-1 093.
[39] Yuan D X, Cheng H, Edwards R L, et al . Timing, duration, and transitions of the last interglacial Asian Monsoon[J]. Science , 2004, 304(5 670): 575-578.
[40] Orombelli G, Maggi V, Delmonte B, et al . Quaternary stratigraphy and ice core[J]. Quaternary International , 2010, 219(1/2): 55-65.
[41] EPICA Community Members. Eight glacial cycles from an Antarctic ice core[J]. Nature , 2004, 429(6 992): 623-628.
[42] Jouzel J, Lorius C, Petit J R, et al . Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years)[J]. Nature , 1987, 329(6 138): 403-408.
[43] Lorius C, Jouzel J, Ritz C, et al . A 150,000-year climatic record from Antarctic ice[J]. Nature , 1985, 316(6 029): 591-596.
[44] Kawamura K, Parrenin F, Lisiecki L, et al . Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years[J]. Nature , 2007, 448(7 156): 912-917.
[45] Watanabe O, Jouzel J, Johnsen S, et al . Homogeneous climate variability across East Antarctica over the past three glacial cycles[J]. Nature , 2003, 422(6 931): 509-512.
[46] EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature , 2006, 444(7 116): 195-198.
[47] Imbrie J, McIntyre A, Mix A. Oceanic response to orbital forcing in the late Quaternary: Observational and experimental strategies[M]∥Berger A, et al , eds. Climate and Geo-sciences. Boston: Kluwer Academic Publishers, 1989: 121-164.
[48] Keigwin L D, Curry W B, Lehman S J, et al . The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago[J]. Nature , 1994, 371(6 495): 323-326.
[49] Field M H, Huntley B, Müller H. Eemian climate fluctuations observed in a European pollen record[J]. Nature , 1994, 371(6 500): 779-783,doi:10.1038/371779a0.
[50] Nieuwenhove N V, Bauch H A, Eynaud F, et al . Evidence for delayed poleward expansion of North Atlantic surface waters during the last interglacial (MIS 5e)[J]. Quaternary Science Reviews , 2011, 30(7/8): 934-946.
[51] Kandiano E S, Bauch H A, Fahl K. Last interglacial surface water structure in the western Mediterranean (Balearic) Sea: Climatic variability and link between low and high latitudes[J]. Global and Planetary Change , 2014, 123:67-76,doi:10.106/j.gloplacha.2014.10.004.
[52] Winograd I J, Landwehr J M, Ludwig K R, et al . Duration and structure of the past four interglaciations[J]. Quaternary Research , 1997, 48(2): 141-154.
[53] Rohling E J, Grant K, Hemleben C, et al . High rates of sea-level rise during the last interglacial period[J]. Nature Geoscience , 2008, 1: 38-42,doi:10.1038/ngeo.2007.28.
[54] Oppo D W, Keigwin L D, McManus J F, et al . Persistent suborbital climate variability in marine isotope stage 5 and Termination Ⅱ[J]. Paleoceanography , 2001, 16(3): 280-292.
[55] McManus J F, Oppo D W, Keigwin L D, et al . Thermohaline circulation and prolonged Interglacial warmth in the North Atlantic[J]. Quaternary Research , 2002, 58(1): 17-21.
[56] Thouveny N, Beaulieu J L D, Bonifay E, et al . Climate variations in Europe over the past 140 kyr deduced from rock magnetism[J]. Nature , 1994, 371(6 497): 503-506.
[57] Aalbersberg G, Litt T. Multiproxy climate reconstructions for the Eemian and Early Weichselian[J]. Journal of Quaternary Science , 1998, 13(5): 367-390.
[58] Shumilovskikh L S, Arz H W, Wegwerth A, et al . Vegetation and environmental changes in Northern Anatolia between 134 and 119 ka recorded in Black Sea sediments[J]. Quaternary Research , 2013, 80(3): 349-360.
[59] Litt T, Junge F W, Böttger T. Climate during the Eemian in north-central Europe—A critical review of the palaeobotanical and stable isotope data from central Germany[J]. Vegetation History and Archaeobotany , 1996, 5(3): 247-256.
[60] GRIP Members. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature , 1993, 364(6 434): 203-207.
[61] Petit J R, Jouzel J, Raynaud D, et al . Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature , 1999, 399(6 735): 429-436.
[62] Kelly M J, Edwards R L, Cheng H, et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination Ⅱ[J]. Palaeogeography , Palaeoclimatology , Palaeoeocology , 2006, 236(1): 20-38.
[63] Fréchette B, Vernal A D. Evidence for large-amplitude biome and climate changes in Atlantic Canada during the last interglacial and mid-Wisconsinan periods[J]. Quaternary Research , 2013, 79(2): 242-255.
[64] Jensen B J L, Reyes A V, Froese D G, et al . The Palisades is a key reference site for the middle Pleistocene of eastern Beringia: New evidence from paleomagnetics and regional tephrostratigraphy[J]. Quaternary Science Reviews , 2013, 63(3): 91-108.
[65] Burdette K E, Rink W J, López G I, et al . Geological investigation and optical dating of Quaternary siliciclastic sediments near Apalachicola, North-west Florida, USA[J]. Sedimentology , 2012, 59(6): 1 836-1 849.
[66] Otvos E G. Numerical chronology of Pleistocene coastal plain and valley development; extensive aggradation during glacial low sea-levels[J]. Quaternary International , 2005, 135(1): 91-113.
[67] Pierce K L, Muhs D R, Fosberg M A, et al . A loess-paleosol record of climate and glacial history over the past two glacial-interglacial cycles (~150 ka), southern Jackson Hole, Wyoming[J]. Quaternary Research , 2011, 76(1): 119-141.
[68] Miller L M, Pigati J S, Anderson R S, et al . Summary of the Snowmastodon Project Special Volume: A high-elevation, multi-proxy biotic and environmental record of MIS 6-4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA[J]. Quaternary Research , 2014, 82(3): 618-634.
[69] Elias S A. Environmental interpretation of fossil insect assemblages from MIS 5 at Ziegler Reservoir, Snowmass Village, Colorado[J]. Quaternary Research , 2014, 82(3): 592-603.
[70] Willians D F, Thumell R C, Tappa E, et al. Chronology of the Pleistocene oxygen isotope record:0-1.88 million years before present[J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 1988, 64(3/4): 221-240.
[71] Rasmussen T L, Thomsen E, Kuijpers A, et al . Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial)[J]. Quaternary Science Review , 2003, 22(8/9): 809-821.
[72] Johnsen S J, Clausen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core[J]. Nature , 1992, 359(6 393): 311-313.
[73] Loulergue L, Schilt A, Spahni R, et al . Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years[J]. Nature , 2008, 453(7 193): 383-386.
[74] Song Changqing, Sun Xiangjun. Advances in studies of Quaternary palynology in China[J]. Advances in Earth Science , 1999, 4(14): 401-406.
. 地球科学进展, 1999, 4(14): 401-406.]
[75] Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the Last 130,000 yr[J] . Quaternary Research , 1995, 43(1): 22-29.
[76] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature , 1995, 375(6 529): 305-308.
[77] Chen F H, Qiang M R, Feng Z D, et al . Stable East Asian monsoon climate during the last interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Change , 2003, 36(3): 171-179.
[78] An Zhisheng, Porter S, Kukla G, et al . Magnetic susceptibility evidence of monsoon variations on the loess Plateau of Central China during the last 130 000 years[J]. Chinese Science Bulletin , 1990, 35(7): 529-532.
. 科学通报, 1990, 35(7): 529-532.]
[79] An Z S, Kukla G J, Porter S C, et al . Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research , 1991, 36(1): 29-36.
[80] Pang Jiangli, Huang Chunchang, Zhang Zhanping . Rb、Sr elements and high resolution climatic records in the Loess-Paleosol profile at Qishan, Shannxi[J]. Acta Sedimentologica Sinica , 2001, 19(4): 637-641.
. 沉积学报, 2001, 19(4): 637-641.
[81] Hodell D A, Minth E K, Curtis J H, et al . Surface and deep-water hydrography on Gardar Drift (Iceland Basin) during the last interglacial period[J]. Earth and Planetary Science Letters , 2009, 288(1): 10-19.
[82] Hodgson D A, Verleyen E, Squier A H, et al . Interglacial environments of coastal east Antarctica: Comparison of MIS 1(Holocene) and MIS 5e (last interglacial) lake-sediment records[J]. Quaternary Science Review , 2006, 25(1/2): 179-197.
[83] Johnsen S J, Dahl-Jensen D, Gundestrup N, et al . Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp century, Dye-3, GRIP, GISP2, Renland and NorthGRIP[J]. Journal of Quaternary Science , 2001, 16(4): 299-307.
[84] Chappellaz J, Brook E, Blunier T, et al . CH 4 and δ 18 O of O 2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores[J]. Journal of Geophysical Research , 1997, 102(C12): 26 547-26 557.
[85] Landais A, Chappellaz J, Delmotte M F, et al . A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core[J]. Journal of Geophysical Research , 2003, 108(18): 1 399-1 407.
[86] Johnsen S J, Clausen H B, Dansgaard W, et al . The Eem stable isotope record along the GRIP ice core and its interpretation[J]. Quaternary Research , 1995, 43(2): 117-124.
[87] Johnsen S J, Clausen H B, Dansgaard W, et al . The δ 18 O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability[J]. Journal of Geophysical Research , 1997, 102(C12): 26 397-26 410.
[88] Zagwijn W H. An analysis of Eemian climate in western and central Europe[J]. Quaternary Science Review , 1996, 15(5/6): 451-469.
[89] Klotz S, Guiot J, Mosbrugger V. Continental European Eemian and early Würmian climate evolution: Comparing signals using different quantitative reconstruction approaches based on pollen[J]. Global and Planetary Change , 2003, 36(4): 277-294.
[90] Li Shijie, Qu Rongkang, Zhu Zhaoyu, et al . A carbonate content record of late Quaternary climate and environment changes from Lacustrine Core TS95 in Tianshuihai Lake Basin,Northwestern Qinghai-Xizang (Tibet) Plateau[J]. Journal of Lake Sciences , 1998, 10(2): 58-65.
. 湖泊科学, 1998, 10(2): 58-65.]
[91] Pan Baotian, Wang Jianmin. Loess record of Qinghai-Xizang Plateau monsoon variations in the eastern part of the plateau since the last interglacial[J]. Quaternary Sciences , 1999,19(4): 330-335.
. 第四纪研究, 1999,19(4): 330-335.]
[92] Wu Jinglu, Wang Sumin, Pan Hongxi, et al . Climatic variations in the past 140 ka recorded in core RM, east Qinghai-Xizang Plateau[J]. Science in China ( Series D ), 1997, 27(3): 255-259.
. 中国科学:D辑, 1997, 27(3): 255-259.]
[93] Yuan Linwang, Chen Ye, Zhou Chunlin, et al . Correlation of environmental and climate change between Qaidam Basin Gamma Ray Logging Curve and Guliya Ice Core δ 18 O record since the last interglacial cycle[J]. Journal of Glaciology and Geocryology , 2000, 22(4): 327-332.
. 冰川冻土, 2000, 22(4): 327-332.]
[94] Guang Donghong, Xi Xiaoxia, Hao Yongping, et al . Climate instability revealed in the Beiyuan CaCO 3 record during the last interglacial age[J]. Journal of Glaciology and Geocryology , 1996, 18(2): 119-124.
. 冰川冻土, 1996, 18(2): 119-124.]
[95] Zhang Hucai, Shi Zhengtao, Dai Xuerong. The climate records of deep sea oxygen isotope stage 5: A detailed correlation between Wudu Loess Ice Cores from Polar Glacier and Deep Sea[J]. Journal of Lanzhou University ( Natural Sciences ), 1997, 33(4): 107-115.
. 兰州大学学报:自然科学版, 1997, 33(4): 107-115.]
[96] Wu G J, Pan B T, Guang Q Y, et al . Loess record of climatic changes during MIS 5 in the Hexi Corridor, northwest China[J]. Quaternary International , 2002, 97/98(3): 167-172.
[97] Cao Jixiu, Zhang Yutian, Wang Jianmin, et al . Temporal and spatial characteristics of loess magnetic susceptibility in the Yuanbao Loess Section and the climatic change over the past 150 000 years[J]. Journal of Lanzhou University ( Natural Sciences ), 1997, 33(1): 124-132.
. 兰州大学学报:自然科学版, 1997, 33 (1): 124-132.]
[98] Ding Z L, Ren J Z, Yang S L, et al . Climate instability during the penultimate glaciation: Evidence from two high-resolution loess records, China[J]. Journal of Geophysical Research , 1999, 104(B9): 20 123-20 132.
[99] Cai M T, Wei M J, Xu D N, et al . Vegetation and climate changes during three interglacial periods represented in the Luochuan loess-paleosol section, on the Chinese Loess Plateau[J]. Quaternary International , 2013, 296(439): 131-140.
[100] Feng Z D, Wang H B, Olson C, et al . Chronological discord between the last interglacial paleosol (S1) and its parent material in the Chinese Loess Plateau[J]. Quaternary International , 2004, 117(1): 17-26.
[101] Yang Jinsong. Records on Paleoenvironment in the Downstream of Salawusu River Valley since 150 ka BP[D]. Beijing: Chinese Academy of Geological, 2013.
. 北京: 中国地质科学院, 2013.]
[102] Jin Heling, Li Mingqi, Su Zhizhu, et al . Climatic change reflected by stratigraphical magnetic susceptibility in Salawusu River Basin, North China since 220 ka BP[J]. Journal of Desert Research , 2006, 26(5): 681-687.
. 中国沙漠, 2006, 26(5): 681-687.]
[103] Jin Heling, Li Mingqi, Su Zhizhu, et al . Geochemical features of a profile in Salawusu River Valley and their response to global climate changes since 220ka BP[J]. Journal of Glaciology and Geocryology , 2005, 27(6): 861-868.
. 冰川冻土, 2005, 27(6): 861-868.]
[104] Sun Jimin, Liu Dongsheng, Yuan Baoyin, et al . Stratigraphic division of the Sala US formation and the inferred sedimentary environment[J]. Marine Geology and Quaternary Geology , 1996,(1): 23-31.
. 海洋地质与第四纪地 质, 1996,(1): 23-31.]
[105] Sun Jimin, Liu Dongsheng, Ding Zhongli, et al . The MU US desert evolution in the last 0.5 Ma[J]. Quaternary Sciences , 1996,(4): 359-367.
. 第四纪研究, 1996,(4): 359-367.]
[106] Sun J M, Ding Z L. Deposits and soils of the past 130,000 years at the desert-loess transition in Northern China[J]. Quaternary Research , 1998, 50(2): 148-156.
[107] Berger André L. Long-term variations of caloric insolation resulting from the earth’s orbital elements[J]. Quaternary Research , 1978, 9(2): 139-167.
[108] Jiang D B, Yu G, Zhao P, et al . Paleoclimate modeling in China: A review[J]. Advances in Atmospheric Sciences , 2015, 32(2): 250-275.
[109] Jin Liyan, Chen Fahu. Progress in rapid climate changes and their modeling study in millennial-and Centennial scales[J]. Advances in Earth Science , 2007, 22(10): 1 054-1 065.
. 地球科学进展, 2007, 22(10): 1 054-1 065.]

No Suggested Reading articles found!