Please wait a minute...
img img
Advances in Earth Science  2015, Vol. 30 Issue (9): 1028-1033    DOI: 10.11867/j.issn.1001-8166.2015.09.1028
Orginal Article     
A New Ray Tracing Method for VTI Medium Based on Separated P-SV Waves
Guo Kai1, Wang Pengyan1, Lou Tingting2
1 Sinopec Geophysical Research Institute, Nanjing 211103, China; 2 China resource(Nanjing) Municipal Design Co.Ltd, Nanjing 210000, China
Download:  PDF (4038KB) 
Export:  BibTeX | EndNote (RIS)      

In recent years, modeling and imaging techniques for VTI medium have developed rapidly. Ray tracing in VTI medium is the key issue, whose precision and stability directly affect the results of modeling and imaging. Ray tracing in VTI medium is usually based on the eikonal equation and ray equation derived from the dispersion relation of Alkhalifah (2000). The assumption is that the P wave and S wave are independence, and the velocity of S wave is zero. Thus, in some particular cases, this method is lack of accuracy and stability. In this paper, a new ray tracing method was proposed to overcome this problem. We separated P-SV waves to get the phase velocity of the qP wave, and then to get the eikonal equation and ray equation of qP wave, through which the precision and stability were improved. At the end, numerical tests were made to prove the effectiveness of this method.

Key words:  Eikonal equation      Ray tracing      Ray equation.      VTI medium      Dispersion relation     
Received:  02 March 2015      Published:  20 September 2015
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Lou Tingting
Guo Kai
Wang Pengyan

Cite this article: 

Guo Kai, Wang Pengyan, Lou Tingting. A New Ray Tracing Method for VTI Medium Based on Separated P-SV Waves. Advances in Earth Science, 2015, 30(9): 1028-1033.

URL:     OR

[1] Thomsen L.Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1 954-1 966.
[2] Alkhalifah T. An acoustic wave equation for anisotropic media[J]. Geophysics, 2000, 65(4): 1 239-1 250.
[3] Ĉerveny V. Seismic Ray Theory[M]. Cambridge: Cambridge University Press, 2001.
[4] Zheng X, Psencik I. Local determination of weak anisotropy parameters from qP-wave slowness and particle motion measurements[J]. Pure and Applied Geophysics, 2002,159(7): 1 881-1 905.
[5] Psencik I, Farra V. First-order ray tracing for qP waves in inhomogeneous, weakly anisotropic media[J]. Geophysics, 2005, 70(10): 65-75.
[6] Farra V. First-order ray tracing for qS waves in inhomogeneous, weakly anisotropic media[J]. Geophysics, 2005, 161(2): 309-324.
[7] Alkhalifah T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media[J]. Geophysics, 1997, 62(6): 1 839-1 854.
[8] Alkhalifah T, Tsvankin I. Velocity analysis for transversely isotropic media[J]. Geophysics, 1995, 60(5): 1 550-1 566.
[9] Alkhalifah T. Scanning anisotropy parameters in complex media[J]. Geophysics, 2001, 76(2): U13-U22.
[10] Aki K, Richards P G. Quantitative Seismology: Theory and Methods[M].New York: W. H. Freeman and Co, 1980.
[11] Pestana R C, Ursin B, Stoffa P L. Separate P-and SV-wave equations for VTI media[C]∥SEG Technical Progam Expanded Abstracts, 2011:163-167.
[12] Wang Yongfeng, Jin Zhenmin. Seismic anisotropy: A probe to understand the structure in Earth’s interior[J]. Advances in Earth Science, 2005,20(9): 946-953. [王永锋,金振民.地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.]
[13] Wang Zhenyu, Yang Qinyong, Li Zhenchun. Research status and development trend of near-surface velocity modeling[J]. Advances in Earth Science, 2014, 29(10): 1 138-1 148. [王振宇,杨勤勇,李振春. 近地表速度建模研究现状及发展趋势[J]. 地球科学进展, 2014, 29(10): 1 138-1 148.]
[14] Ju Yiwen, Bu Hongling, Wang Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014, 29(4): 492-506. [琚宜文,卜红玲,王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.]

No Suggested Reading articles found!