Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2009, Vol. 24 Issue (7): 741-747    DOI: 10.11867/j.issn.1001-8166.2009.07.0741
Remote Sensing Retrieval of FAPAR: Model and Analysis
Tao Xin1,Fan Wenjie1,Wang Dacheng2,Yan Binyan1,Xu Xiru1
1. Institute of Remote Sensing and GIS, Peking University, Beijing  100871, China;
2. Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou  310029, China
Download:  PDF (8959KB) 
Export:  BibTeX | EndNote (RIS)      

FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) is an important parameter for remote sensing monitoring plants net primary productivity (NPP) of land ecosystem. It is crucial that the calculated value approximates the actual value of canopy absorbed photosynthetically active radiation. The calculation accuracy directly influences the estimation of NPP and carbon cycle. The model in this paper is derived by analyzing the interaction processes between the photons and the canopy. It considers parameters like soil reflectance, canopy structure and solar zenith angle, etc. The relationship between these parameters and FAPAR is analyzed. The comparison results with Monte Carlo simulations and the validation results using field measurements prove the model to be accurate. We further choose Yingke, Zhangye City, Gansu province as study area, and retrieve LAI and FAPAR from hyperspectral and multi-angle PROBA-CHIRIS. Field data is also used to validate the retrieval result.


Key words:  FAPAR      Quantitative model      Remote sensing retrieval     
Received:  18 May 2009      Published:  10 July 2009
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
FAN Wen-Cha

Cite this article: 

Tao Xin,Fan Wenjie,Wang Dacheng,Yan Binyan,Xu Xiru. Remote Sensing Retrieval of FAPAR: Model and Analysis. Advances in Earth Science, 2009, 24(7): 741-747.

URL:     OR

[1] Gao Yanhua, Chen Liangfu, Liu Qinhuo, et al. Research on remote sensing model for FPAR absorbed by chlorophyll[J].Journal of Remote Sensing,2006, 10(5):798-803.[高彦华,陈良福,柳钦火,等.叶绿素吸收的光合有效辐射比率的遥感估算模型研究[J]. 遥感学报, 2006, 10(5): 798-803.]
[2] Fensholt R,Sandholt I, Rasmussen M S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J].Remote Sensing of Environment, 2004, 91: 490-507.
[3] Wu Bingfang,Zeng Yuan, Huang Jinliang. Overview of  LAI/FPAR retrieval from remotely sensed data[J]. Advances in Earth Science,2004,19(4): 585-590.[吴炳方,曾源,黄进良.遥感提取植物生理参数LAI/ FPAR 的研究进展与应用[J]. 地球科学进展,2004,19(4):585-590.]
[4] Knyazikhin Y, Martonchik J V, Myneni R B,et al.Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data[J].Journal of Geophysical Research,1998,103(24):32 257-32 276.
[5] Myneni R B, Nemani R R, Running S W. Estimation of global leaf area index and absorbed par using radiative transfer models[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(6):1 380-1 393.
[6] Myneni R B, Williams D L. On the relationship between FAPAR and NDVI[J].Remote Sensing of Environment, 1994,49:200-211.
[7] Goward S N, Huemmrich K F. Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model[J].Remote Sensing of Environment,1992,39:119-140.
[8] Sellers P J. Canopy reflectance, photosynthesis, and transpiration[J].International Journal of Remote Sensing, 1985, 6: 1 335-1 372.
[9] Asrar G, Fuchs M, Kanemasu E T, et al. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat[J].Agronomy Journal,1984,76:300-306.
[10] Dawson T P,North P R J, Plummer S E, et al. Forest ecosystem chlorophyll content: Implications for remotely sensed estimates of net primary productivity[J].International Journal of Remote Sensing,2003,24(3):611-617.
[11] Wiegand C T, Maas S J, Aase J K, et al. Multisite analyses of spectral-biophysical data for wheat[J].Remote Sensing of Environment,1992,42:1-21.
[12] Casanova D, Epema G F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI[J].Field Crops Research,1998,55:83-92.
[13] Xu Xiru, Fan Wenjie, Tao Xin. The spatial scaling effect of continuous canopy leaves area index retrieved by remote sensing[J].Science in China(Series D),2009,39(1):79-87.[徐希孺,范闻捷,陶欣.遥感反演连续植被叶面积指数的空间尺度效应[J].中国科学:D辑,2009,39(1):79-87.]
[14] Jin Huiran, Tao Xin, Fan Wenjie, et al. Monitoring the spatial distribution of high-resolution leaf area index using DMC+4 image[J].Progress in Natural Science,2007, 17:1 229-1 234.[金慧然,陶欣,范闻捷,等.应用北京一号卫星数据监测高分辨率叶面积指数的空间分布[J].自然科学进展,2007,17:1 229-1 234.]
[15] Zhou Bin, Chen Liangfu, Shu Xiaobo. The Monte Carlo study on FPAR[J].Journal of Remote Sensing,2008, 12(3): 385-391.[周彬,陈良富,舒晓波.FPAR的Monte Carlo模拟研究[J]. 遥感学报,2008,12(3):385-391.]
[16] Huang Jianxi, Wu Bingfang, Zeng Yuan,et al.Forest canopy BRDF simulation using Monte Carlo method [J]. Journal of System Simulation,2006, 18(6): 1 671-1 676.[黄健熙,吴炳方,曾源,等. 基于蒙特卡罗方法的森林冠层BRDF模拟[J]. 系统仿真学报,2006,18(6): 1 671-1 676.]
[17] Chen Liangfu, Xu Xiru. The simulation using monte Carlo method in vegetation canopy remote sensing[J].Progress in Geography,2000, 19(1): 25-34.[陈良富,徐希孺. 植被遥感的Monte Carlo模拟研究[J]. 地理科学进展,2000,19(1): 25-34.]

No Suggested Reading articles found!