Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2007, Vol. 22 Issue (9): 907-913    DOI: 10.11867/j.issn.1001-8166.2007.09.0907
Current Status of Deep-water Sediment Wave Studies and the South China Sea Perspectives
ZHONG Guang-fa1, LI Qian-yu1, HAO Hu-jun2, WANG Liao-liang3
1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;2. Shenzhen Branch of CNOOC Limited, Shenzhen 518067, China;3.Guangzhou Marine Geological Survey, Guangzhou 510760, China
Download:  PDF (329KB) 
Export:  BibTeX | EndNote (RIS)      

Research on deep-water sediment waves was initiated in the 1950's. So far, significant progress has been achieved. It is been known that deep-water sediment waves are generated mainly by bottom currents or turbidity currents. Four main catalogues of deep-water sediment waves have been recognized according to their grain size of component sediments and formation processes: fine-grained bottom current sediment waves, coarse-grained bottom current sediment waves, finegrained turbidity current sediment waves, and coarse-grained turbidity current sediment waves. Models presented for the formation of deep-water sediment waves include lee-wave model, antidune model, internal wave model and mixed bedform and failure model. Newly-acquired high-resolution seismic data revealed that the sediment drift with high deposition rates on the slope offshore Dongsha Islands, northern South China Sea was actually composed of a series of sediment waves migrated upslope. This finding is of great significance not only to the reconstruction of paleoceanography, paleoenvironment, paleo-tectonics, and paleoclimate, but also to deep-water petroleum exploration in the South China Sea.

Key words:  Deep-water sediment waves      Bottom current deposition      Turbidity current deposition      Sediment drift      South China sea      ODP Leg 184.     
Received:  04 June 2007      Published:  10 September 2007
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors

Cite this article: 

ZHONG Guang-fa, LI Qian-yu, HAO Hu-jun, WANG Liao-liang. Current Status of Deep-water Sediment Wave Studies and the South China Sea Perspectives. Advances in Earth Science, 2007, 22(9): 907-913.

URL:     OR

[1]Wynn R B, Stow D A V. Recognition and interpretation of deep-water sediment waves: Implications for palaeoceanography, hydrocarbon exploration and flow process interpretation[J].Marine Geology,2002,192:1-3.
[2]Stow D A V, Mayall M. Deep-water sedimentary systems: New models for the 21st century[J].Marine and Petroleum Geology,2000,17:125-135.
[3]Wynn R B, Masson D G, Stow D A V, et al. Turbidity current sediment waves on the submarine slopes of the western Canary Islands[J].Marine Geology,2000,163:185-198.
[4]Embley R W, Langseth M G. Sedimentation processes on the continental rise of northeastern South America[J].Marine Geology,1977,25:279-297.
[5]Wynn R B, Weaver P P E, Ercilla G, et al. Sedimentary processes in the Selvage sediment-wave field, NE Atlantic: New insights into the formation of sediment waves by turbidity currents[J].Sedimentology,2000,47:1 181-1 197.
[6]Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J].Marine Geology,2002,192:7-22.
[7]Normark W R, Hess G R, Stow D A V, et al. Sediment waves on the Monterey Fan levee: A preliminary physical interpretation[J].Marine Geology,1980,37:1-18.
[8]Normark W R, Piper D J W, Posamentier H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J].Marine Geology,2002,192:23-58.
[9]Nakajima T, Satoh M, Okamura Y. Channel-levee complexes, terminal deep-sea fan and sediment wave fields associated with the Toyama deep-sea channel system in the Japan sea[J].Marine Geology,1998,149:25-41.
[10]McHugh C M G, Ryan W B F. Sedimentary features associated with channel overbank flow: Examples from the Monterey Fan[J].Marine Geology,2000,163:199-215.
[11]Migeon S, Savoye B, Faugeres J-C. Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J].Sedimentary Geology,2000,133:265-293.
[12]Nakajima T, Satoh M. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan sea[J].Sedimentology,2001,48:435-463.
[13]Damuth J E. Migrating sediment waves created by turbidity currents in the northern south China basin[J].Geology,1979,7:520-523.
[14]Ercilla G, Alonso B, Wynn R B, et al. Turbidity current sediment waves on irregular slopes: Observations from the Orinoco sediment-wave field[J].Marine Geology,2002,192:171-187.
[15]Ercilla G, Wynn R B, Alonso B, et al. Initiation and evolution of turbidity current sediment waves in the Magdalena Turbidite System[J].Marine Geology,2002,192:153-169.
[16]Gonthier E, Faugères J-C, Gervais A, et al. Quaternary sedimentation and origin of the Orinoco sediment-wave field on the Demerara continental rise (north-eastern margin of South America)[J].Marine Geology,2002, 192: 189-214.
[17]Lee H J, Syvitski J P M, Parker G, et al. Distinguishing sediment waves from slope failure deposits: Field examples, including the Humboldt Slide' and modelling results[J].Marine Geology,2002,192:79-104.
[18]Lewis K B, Pantin H M. Channel-axis, overbank and drift sediment waves in the southern Hikurangi Trough, New Zealand[J].Marine Geology,2002,192:123-151.
[19]Flood R D, Shor A N, Manley P D. Morphology of abyssal mudwaves at project MUDWAVES sites in the Argentine basin[J].Deep-Sea Research,1993,40:859-888.
[20]Manley P L, Caress D W. Mudwaves on the Gardar sediment drift, NE Atlantic[J].Paleoceanography,1994,9:973-988.
[21]Howe J A. Turbidite and contourite sediment waves in the northern Rockall Trough, North Atlantic Ocean[J].Sedimentology,1996,43:219-234.
[22]Flood R D, Giosan L. Migration history of a fine-grained abyssal sediment wave on the Bahama Outer Ridge[J].Marine Geology,2002,192:259-273.
[23]Masson D G, Howe J A, Stoker M S. Bottom current sediment waves, sediment drifts and contourites in the northern Rockall Trough[J].Marine Geology,2002,192:215-237.
[24]von Lom-Keil H, Speiss V, Hopfauf V. Fine-grained sediment waves on the western flank of the Zapiola Drift, Argentine Basin-Evidence for variations in Late Quaternary bottom flow activity[J].Marine Geology,2002,192:239-258.
[25]Ediger V, Velegrakis A F, Evans G. Upper slope sediment waves in the Cilician Basin, north-eastern Mediterranean[J].Marine Geology,2002,192:321-333.
[26]Clarke J E H, Shor A N, Piper D J W, et al. Large-scale current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current[J].Sedimentology,1990,37:613-629.
[27]Piper D J W, Kontopoulos N. Bedforms in submarine channels: comparison of ancient examples from Greece with studies of recent turbidite systems[J].Journal of Sedimentary Research,1994,64:247-252.
[28]Kidd R B, Lucchi R G, Gee M, et al. Sedimentary processes in the Stromboli Canyon and Marsili basin, SE Tyrrhenian sea: Results from sidescan sonar surveys[J].Geo-Marine Letter,1998,18:146-154.
[29]Morris S A, Kenyon N H, Limonov A F, et al. Downstream changes of large-scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean: Implications for paleoflow reconstruction[J].Sedimentology,1998,45:365-377. 
[30]Dorn W U, Werner F. The contour-current flow along the southern Iceland-Faeroe Ridge as documented by its bedforms and asymmetrical channel fillings[J].Sedimentary Geology,1993,82:47-59.
[31]Kenyon N H, Akhmetzhanov A M, Twichell D C. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands[J].Marine Geology,2002,192:297-307.
[32]Flood R D. A lee wave-model for deep-sea mudwave activity[J].Deep-Sea Resarch,1988,35:973-983.
[33]Karl H A, Carlson P R. Large sand waves in Navarinsky Canyon head Bearing sea[J]. Geo-Marine Letter,1982,2:157-162.
[34]Karl H A, Cacchione D A, Carlson P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, Bering sea[J].Journal of Sedimentary Petrology,1986,56:706-714.
[35]Faugères J-C, Gonthier E, Mulder T, et al. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[J].Marine Geology,2002,182:279-302.
[36]Blumsack S L. A model for the growth of mudwaves in the presence of time-varying currents[J].Deep-Sea Research,1993,40:963-974.
[37]Weatherly G L. On deep-current and hydrographic observations from a mudwave region and elsewhere in the Argentine Basin[J]. Deep-Sea Research,1993,40:939-961.
[38]Flood R D, Giosan L. Migration history of a fine-grained abyssal sediment wave on the Bahama Outer Ridge[J].Marine Geology,2002,182:279-302.
[39]Blumsack S L, Weatherly G L. Observations of the nearby flow and a model for the growth of mudwaves[J].Deep-Sea Research,1989,36:1 327-1 339.
[40]Lewis K B. The 1500 km long Hikurangi Channel: trench-axis channel that escapes its trench, crosses a plateau, and feeds a fan drift[J].Geo-Marine Letter,1994,14:19-28.
[41]Howe J A. Turbidite and contourite sediment waves in the northern Rockall Trough, North Atlantic Ocean[J].Sedimentology,1996,43:219-234.
[42]Hand B M, Middleton G V, Skipper K. Antidune cross-stratification in a turbidite sequence, Cloridorme formation, Gaspe, Quebec[J].Sedimentology,1972,18:135-138.
[43]Piper D J W, Savoye B. Processes of late Quaternary turbidity current flow and deposition on the Var deepsea fan, north-west Mediterranean Sea[J].Sedimentology,1993,40:557-582.
[44]Hand B M. Supercritical flow in density currents[J].Journal of Sedimentary Petrology,1974,44:637-648.
[45]Kolla V, Eittreim S, Sullivan L, et al. Current-controlled, abyssal microtopography and sedimentation in Mozambique basin, Southwest Indian Ocean[J].Marine Geology,1980,34:171-206.
[46]Allen J R L. Sedimentary Structures, Their Character and Physical basis[M]. Amsterdam: Elsevier,1984.
[47]Gao Zhenzhong, He Youbin, Luo Shunshe, et al. Deep-water Tractive Current Deposits: The Study of Internal-tide, Internal-wave, and Contour Current Deposits[M]. Beijing: Science Press,1996:1-22.[高振中,何幼斌,罗顺社,等.深水牵引流沉积——内潮汐、内波和等深流沉积研究[M].北京:科学出版社,1996:1-22.]
[48]Zhang Xingyang, Gao Zhenzhong, Yao Xuegen. Internal-wave deposits in the Northeastern Rockall Trough, North Atlantic Ocean—Reinterpretation of deep-water sediment wave formation[J].Acta Sedimentologuca Sinica,1999,17:464-472.[张兴阳,高振中,姚雪根.北大西洋洛克尔海槽东北部内波沉积——深水大型沉积物波成因的再解释[J].沉积学报,1999,17:464-472.]
[49]Wang Qingchun, He Youbin, He Ping, et al. The formation of large mud-waves on the levees of Toyama deep-sea channel in the Sea of Japan[J].Acta Oceanologica Sinica,2004,26:143-148.[王青春,何幼斌,贺萍,等.日本海富山深海水道堤坝大型泥波的成因[J].海洋学报,2004,26:143-148.]
[50]Wong H K, Lüdmann T, Wollschlager M. Seismic reflection profiling at the northern continental margin of the South China Sea (Sonne-95 Cruise)[C]//Sarnthein M, Pflaumann U, Wang P X, et al, eds. Preliminary Report on Sonne-95 Cruise “Monitor Monsoon” to the South China Sea. Reports, Geol-Palaont Inst Uni Kiel,1994,68: 46-53.
[51]Wang P X, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports South China Sea[R].2000:184.
[52]Shao Lei, Li Xianhua, Wei Gangjian. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J].Science in China(Series D), 2001,44:919-925. [邵磊,李献华,韦刚健,等.南海高速堆积体大物质来源[J].中国科学:D辑,2001,31:828-833.]
[53]Lüdmann T, Wong H K, Berglar K. Upward flow of North Pacific deep water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 32: 2005, L05614, doi:10.1029/2004GL021967.  
[54]Shao Lei, Li Xuejie, Geng Jianhua, et al. Deepsea bottom current sedimentation in the northern Southern China Sea[J].Science in China(Series D),2007:37(in press).[邵磊,李学杰,耿建华,等.南海北部深水底流沉积作用[J].中国科学:D辑,2007:37(待刊).]
[55]Bühring, Sarnthein M, Erlenkeuser H. Toward a high-resolution stable isotope stratigraphy of the last 1.1 m.y.: Site 1144, South China Sea[C]//Prell W L, Wang   P, Blum P, et al, eds. Proceedings of the Ocean Drilling Program[J].Scientific Results,2004,184:1-29.

No Suggested Reading articles found!