Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2014, Vol. 29 Issue (7): 828-834    DOI: 10.11867/j.issn.1001-8166.2014.07.0828
Effects of Crustal Structure for Estimation of Vertical Load Deformation on the Solid Earth Using GRACE in China Mainland
Jia Lulu1, 2, Xiang Longwei2, 3, Wang Hansheng2
1. National Earthquake Infrastructure Service, Beijing 100036, China; 2. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Download:  RICH HTML PDF (4973KB) 
Export:  BibTeX | EndNote (RIS)      

When the inversion of vertical load deformation on Earth’s surface using GRACE (Gravity Recovery and Climate Experiment) data, the load Love numbers based on PREM (Preliminary Reference Earth Model) are commonly used. But the crustal structure under China mainland especially under Tibet Plateau is quite different from that given by PREM Earth model. New load Love numbers were calculated based on a modified Earth model which accounted for regional crustal structure in China mainland. And the effect of regional crustal structure in China mainland for estimation of vertical load deformation on Earth’s surface using GRACE RL05 data was investigated in this paper. It is found that the effect of crustal difference is very prominent. The relative difference of load Love numbers for vertical deformation can reach about 11% at degree 90. The extreme value of difference in vertical load deformation below 90 degree of spherical harmonic coefficients located at the southeastern Tibet Plateau and the maximum relative difference reaches 10%. The relative difference of the root mean square is about 4%. It is suggesting that an Earth model with a more realistic crustal structue instead of PREM should be used for the estimation of vertical load deformation in China mainland espacially in Tibet Plateau.

Key words:  Vertical deformation      Regional crustal structure      China mainland.      Satellite gravity      Solid Earth mass loading     
Published:  10 July 2014
ZTFLH:  P312.1  
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Jia Lulu
Xiang Longwei
Wang Hansheng

Cite this article: 

Jia Lulu, Xiang Longwei, Wang Hansheng. Effects of Crustal Structure for Estimation of Vertical Load Deformation on the Solid Earth Using GRACE in China Mainland. Advances in Earth Science, 2014, 29(7): 828-834.

URL:     OR

[1] J, Elósegui P, Mitrovica J, et al. Climate-driven deformation of the solid Earth from GRACE and GPS[J]. Geophysical Research Letters, 2004, 31(24): L24605, doi:10.1029/2004GL021435.
[2] J, Dam T, Larson K, et al. Geodetic measurements in Greenland and their implications[J]. Journal of Geophysical Research, 2001, 106(B8): 16 567-16 581.
[3] K, Khan S A, Spada G, et al. Vertical and horizontal surface displacements near Jakobshavn Isbrea driven by melt-induced and dynamic ice loss[J]. Journal of Geophysical Research, 2013, 118(4): 1 837-1 844.
[4] B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5 683): 503-505.
[5] B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607, doi:10.1029/2004GL019920.
[6] Hansheng, Wang Zhiyong, Yuan Xudong. Water storage changes in Three Gorges water systems area inferred from GRACE time-variable gravity data[J]. Chinese Journal of Geophysics, 2007, 50(3): 730-736.[汪汉胜, 王志勇, 袁旭东. 基于GRACE 时变重力场的三峡水库补给水系水储量变化[J]. 地球物理学报, 2007, 50(3): 730-736.]
[7] J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: First results[J]. Geophysical Research Letters, 2004, 31(11): L11501,doi:10.1029/2004GL019779.
[8] Lulu, Wang Hansheng, Xiang Longwei, et al. Effects of glacial isostatic adjustment on the estimation of ice mass balance over Antarctica and the uncertainties[J].Chinese Journal Geophysics, 2011, 54(6): 1 466-1 477.[贾路路, 汪汉胜, 相龙伟, 等. 冰川均衡调整对南极冰质量平衡监测的影响及其不确定性[J]. 地球物理学报, 2011, 54(6): 1 466-1 477.]
[9] M A, Bingham R J, Moore P, et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J]. Nature, 2012, 491(7 425): 586-589.
[10] E R, James T S, Wahr J, et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction[J]. Journal of Geophysical Research, 2013, 118(6): 3 126-3 141.
[11] W. Deformation of the Earth by surface loads[J]. Reviews of Geophysics and Space Physics, 1972, 10(3): 761-797.
[12] Haihua, Zhong Min, Zhou Xuhua. Climate-driven annual vertical deformation of solid Earth calculated from GRACE[J]. Chinese Journal of Geophysics, 2010, 53(5): 1 091-1 098.[廖海华, 钟敏, 周旭华. 利用 GRACE 卫星重力资料解算气候驱动的地表周年垂直形变[J]. 地球物理学报, 2010, 53(5): 1 091-1 098.]
[13] Y, Freymueller J T. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements[J]. Journal of Geophysical Research, 2012, 117(B3): B03407, doi:10.1029/2011JB008925.
[14] J, Schrama E. Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data[J]. Journal of Geophysical Research, 2005, 110(B9): B09409, doi:10.1029/2004JB003556.
[15] Liangjing, Jin Shuanggen, Zhang Tengyu. Seasonal variations of Earth’s surface deformation estimated from GPS and satellite gravimetry[J]. Journal of Geodesy and Geodynamics, 2012, 32(2): 32-38.[张良镜, 金双根, 张腾宇. 用GPS和卫星重力观测估计地表形变的季节性变化[J]. 大地测量与地球动力学, 2012, 32(2): 32-38.]
[16] A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.
[17] Hansheng, Xu Houze, Li Guoying. Improvement of computation of load Love numbers of SNREI Earth model[J]. Chinese Journal Geophysics, 1996, 39(Suppl.): 182-189.[汪汉胜, 许厚泽, 李国营. SNREI地球模型负荷勒夫数数值计算的新进展[J]. 地球物理学报, 1996, 39(增刊): 182-189.]
[18] H, Xiang L, Wu P, et al. Effects of the Tibetan Plateau crustal structure on the inversion of water trend rates using simulated GRACE/GPS data[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2013, 24(4): 505-512.
[19] G, Masters G, Reif C. CRUST 2.0: A New Global Crustal Model at 2×2 Degrees[DB/OL]. 2011[2014-02-17].http:∥
[20] H, Xiang L, Jia L, et al. Load love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0[J]. Computer & Geoscience, 2012, 49: 190-199.
[21] Xiaolei, Shen Yunzhong, Zhang Zizhan. Antarctica ice mass change analysis based on GRACE RL05 data[J]. Chinese Journal of Geophysics, 2013, 56(9): 2 918-2 927.[鞠晓蕾, 沈云中, 张子占. 基于GRACE卫星RL05数据的南极冰盖质量变化分析[J]. 地球物理学报, 2013, 56(9): 2 918-2 927.]
[22] D P. Observing seasonal steric sea level variations with GRACE and satellite altimetry[J]. Journal of Geophysical Research, 2006, 111(C3): C03010, doi:10.1029/2005JC002914.
[23] H, Wu P, Wang H. Determination of the Earth’s structure in Fennoscandia from GRACE and implications on the optimal post-processing of GRACE data[J]. Geophysical Journal International, 2010, 182(3): 1 295- 1 310.
[24] J, Molenaar M. Time variability of the Earth’s gravity field:Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research, 1998, 103(B12): 30 205-30 229.
[25] Lulu. Effects of Glacial Isostatic Adjustment on the Estimate of Present-Day Mass Balance on the Earth’s Surface[D]. Beijing: University of Chinese Academy of Sciences, 2012.[贾路路. 冰川均衡调整对现今地表质量平衡监测影响的研究[D]. 北京: 中国科学院大学, 2012.]
[26] Yang, Wei Zhigang. Comparison of the precipitation cycle and trend in different areas of Northern China in recent 50 years[J]. Advances in Earth Science, 2012, 27(3): 337-346.[刘扬, 韦志刚.近50年中国北方不同地区降水周期趋势的比较分析[J].地球科学进展,2012,27(3):337-346.]
[27] Q, Zhang X, Tang Y. Anthropogenic impacts on mass change in North China[J]. Geophysical Research Letters, 2013, 40(15): 3 924-3 928.
[28] Suhua, Fei Yuhong, Zhang Zhaoji, et al. Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China Plain[J]. Advances in Earth Science, 2013, 28(8): 923-929.[孟素花, 费宇红, 张兆吉, 等. 50年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929.]
[29] X, De Linage C, Famiglietti J, et al. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements[J]. Water Resources Research, 2011, 47(12): W12502, doi:10.1029/2011WR010534.
[30] J, Swenson S, Velicogna I. Accuracy of GRACE mass estimates[J]. Geophysical Research Letters, 2006, 33(6): L06401, doi:10.1029/2005GL025305.
[2] Yao Tandong,Zhu Liping. The Response of Environmental Changes on Tibetan Plateau to Global Changes and Adaptation Strategy[J]. Advances in Earth Science, 2006, 21(5): 459 -464 .
[3] Xu Daoyi. [J]. Advances in Earth Science, 1994, 9(3): 76 -78 .
[4] . Problems of the Shear Stress Partition Sub-models of a Dust  Production Model[J]. Advances in Earth Science, 2006, 21(4): 424 -429 .
[5] . [J]. Advances in Earth Science, 1992, 7(3): 103 .
[6] . [J]. Advances in Earth Science, 1987, 2(1): 28 -29 .
[7] ZHANG Zhiqiang;LI Yanmei;CHAI Yucheng. ANALYSIS OF THE STRATEGY OF FUNDING PROFILE OF GEOSCIENCES OF US’S NATIONAL SCIENCE FOUNDATION[J]. Advances in Earth Science, 2005, 20(10): 1143 -1152 .
[8] GAO Li, LI Jian-ping. Progress in the Study of Atmospheric Energy Efficiency[J]. Advances in Earth Science, 2007, 22(5): 486 -494 .
[9] . [J]. Advances in Earth Science, 1988, 3(4): 13 -16 .
[10] Zeng Jingjing, Qu Jiansheng, Zhang Zhiqiang. Review of the International Greenhouse Gas Emission Reduction Scenario Programs[J]. Advances in Earth Science, 2009, 24(4): 436 -443 .