On August 24, 2023, the Japanese government started discharging the Fukushima Nuclear Contaminated Water (FNCW) into the North Pacific. This process is bound to pose radiation risks for the marine ecological environment. In this study, we analyzed the concentrations of major artificial radionuclides in the FNCW and estimated their inventories. Based on the data provided by the Tokyo Electric Power Company, we found that the concentrations of 3H in FNCW tanks as of March 2023 ranged from 1.9×105 to 25.0×105 Bq/L, significantly exceeding the maximum release concentration for 3H (6×104 Bq/L) allowed by Japanese law. In addition, the concentrations of 90Sr and 129I in some FNCW tanks were higher than the corresponding maximum release concentrations (30 Bq/L for 90Sr and 9 Bq/L for 129I) allowed by Japanese law. The inventories of 3H and 129I in the FNCW before the discharge were estimated to be 0.9 and 6.2×109 Bq, respectively, i.e., comparable to the leakage amounts of 3H (0.1~1.0 PBq) and 129I (6.9×109 Bq) to the ocean during the nuclear accident stage. We further discuss the migration and behavior of typical Fukushima radionuclides (e.g., 3H, 14C, 60Co, 90Sr, 129I, 134, 137Cs, and 239, 240Pu) in marine environments from three aspects:
transport of Fukushima radionuclides by ocean currents in the Pacific;
sediment adsorption to radionuclides; and
marine biota uptake of radionuclides. This study is expected to provide scientific foundations and insights for radiation monitoring and risk assessment, which may be required for an appropriate response to the discharge of the FNCW.