Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2021, Vol. 36 Issue (7): 694-711    DOI: 10.11867/j.issn.1001-8166.2021.055
    
Research Progress of InSAR Technology in Permafrost
Shichao JIA1(),Tingjun ZHANG1(),Chengyan FAN1,Lin LIU2,Wanwan SHAO1
1.Key Laboratory of Western China's Environmental Systems (Ministry of Education),College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China
2.Earth System Science Programme,Faculty of Science,The Chinese University of Hong Kong,Hong Kong 999077,China
Download:  RICH HTML PDF (2885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Permafrost is gradually degraded with climate warming, which seriously affects the stability of engineering construction in permafrost regions. Therefore, real-time and accurate monitoring of permafrost changes is urgent. Synthetic Aperture Radar Interferometry (InSAR), as a new type of earth observation technology, can monitor the surface of permafrost regions on a large scale at all times and in all weather, and become an effective monitoring method. This paper aims to introduce the research progress and future development trends of InSAR technology in permafrost regions in the past two decades. Firstly, the basic principle of InSAR technology and SAR system are introduced. Then, based on the development of InSAR technology, the application of D-InSAR and multi-temporal InSAR in permafrost regions is outlined. It also summarizes the currently developed freeze-thaw models and analyzes the influencing factors of surface deformation in permafrost regions. Finally, look forward to the future development trend and main problems of InSAR technology in permafrost monitoring, in order to provide scientific research personnel with a systematic application introduction.

Key words:  Permafrost      InSAR      Ground surface deformation      Freeze-thaw model     
Received:  20 February 2021      Published:  20 August 2021
ZTFLH:  P642.14  
Fund: the Chinese Academy of Sciences Class A Leading Science and Technology Project "Permafrost changes and hydrological ecological effects in Qilian Mountains"(XDA20100103);"Third Pole and Pan-Third Pole and its linkage with the North and South Pole"(XDA20100313)
Corresponding Authors:  Tingjun ZHANG     E-mail:  jiashch19@lzu.edu.cn;tjzhang@lzu.edu.cn
About author:  JIA Shichao (1993-), male, Maanshan City, Anhui Province, Ph. D student. Research areas include InSAR technology to monitor permafrost changes. E-mail: jiashch19@lzu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Shichao JIA
Tingjun ZHANG
Chengyan FAN
Lin LIU
Wanwan SHAO

Cite this article: 

Shichao JIA,Tingjun ZHANG,Chengyan FAN,Lin LIU,Wanwan SHAO. Research Progress of InSAR Technology in Permafrost. Advances in Earth Science, 2021, 36(7): 694-711.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2021.055     OR     http://www.adearth.ac.cn/EN/Y2021/V36/I7/694

Fig. 1  Schematic diagram of InSAR technology36
Fig. 2  Civil SAR systems commonly used in InSAR technology
SAR传感器运行起止时间重放周期/d宽幅/km波段分辨率/方位向×距离向极化方式入射角
SEASAT1978.06~1017100L25 m×25 mHH20°~26°
SIR-A1981.11—1981.1150L40 m×40 mHH47°
SIR-B1983.10—1984.1050L40 m×40 mHH15°~64°
ERS-11991.07—2000.0335、3、168100C30 m×30 mVV20°~26°
JERS-11992.02—1998.104475L18 m×18 mHH35°
ERS-21995.04—2011.0935、3100C30 m×30 mVV20°~26°
Radarsat-11995.11—2013.0324精细模式:50C9 m×8.9 mHH37°~47°
标准模式:10028 m×(21~27) m20°~49°
扫描模式:50028 m×(23,27,35) m20°~45°
Envisat2002.03—2012.0435、30极化模式:58~100C30 m×(30~150) mVV+HH、HH+HV、VV+VH15°~45°
图像模式:58~10030 m×(30~150) mVV、HH15°~45°
波模式:510 m×10 m15°~45°
带宽模式:405150 m×150 m17°~42°
ALOS-12006.01—2011.0546单极化/双极化模式:70L10 m×(7,14) mHH、VV、HH+HV、VV+VH8°~60°
全极化模式:3010 m×24 mHH+HV+VV+VH8°~30°
TerraSAR-X2007.06至今11高分辨率聚束模式:10X1 m×(1.5~3.5) mHH、VV、HH+VV20°~55°
聚束模式:102 m×(1.5~3.5) mHH、VV、HH+VV20°~55°
条带模式:303 m×(3~6) mHH、VV、HH+VV、HH+HV、VV+VH、HH+HV+VV+VH20°~45°
扫描模式:10026 m×16 mHH、VV20°~45°
COSMO-SkyMed2007.06至今24聚束模式:10X1 m×1 mHH、VV25°~50°
条带模式:30~403~15 mHH、HV、VV、VH、HH+VV、HH+HV、VV+VH25°~50°
扫描模式:100~20030~100 mHH、HV、VV、VH25°~50°
Radarsat-22007.12至今24聚束模式:20C0.8 m×(2.1~3.3) mHH、HV、VV、VH20°~49°
条带模式:20~150(3.0~25.6) m×(2.5~42.8) mHH,HH+HV+VV+VH20°~60°
扫描模式:300~500(46~113) m×(43~183) mHH、HV、VV、VH、HH+VV、VV+VH20°~49°
Sentinel-1A2014.04至今12条带模式:80C5 m×5 mHH、VV、HH+HV、VV+VH20°~45°
干涉宽带模式:2505 m×20 mHH、VV、HH+HV、VV+VH29°~46°
超幅宽模式:40020 m×40 mHH、VV、HH+HV、VV+VH19°~47°
波模式:205 m×5 mHH、VV

22°~35°

/35°~38°

ALOS-22014.05至今14聚束模式:25L1 m×3 mHH、HV、VV、VH8°~70°
条带模式:50/703 m、6 m、10 mHH、HV、VV、VH、HH+VV、VV+VH
扫描模式:350/490100 m、60 mHH、HV、VV、VH、HH+VV、VV+VH
Sentinel-1B2016.04至今12条带模式:80C5 m×5 mHH、VV、HH+HV、VV+VH20°~45°
干涉宽带模式:2505 m×20 mHH、VV、HH+HV、VV+VH29°~46°
超幅宽模式:40020 m×40 mHH、VV、HH+HV、VV+VH19°~47°
波模式:205 m×5 mHH、VV

22°~35°/

35°~38°

GF-32016.08至今2012种模式:10~650C1~500 m

VV、VH、VV+VH、

HH+HV+VV+VH

10°~60°
Table 1  Design parameters of major civil satellite SAR systems
数据(波段)研究区形变结果参考文献
ERS-1(C)阿拉斯加布鲁克斯山脉地区检测到Imnavait分水岭和Toolik湖及其周围发生3 cm的抬升49
ERS-1/2(C)青藏高原青藏公路沿线垂直沉降量最大约10.1 mm50
Radarsat-1(C)加拿大西北部Thunder河雷达视线方向最大滑塌形变为20 mm51
ALOS PALSAR(L)青藏高原研究区最大沉降量达到15 cm,最大抬升量为8 cm52
ALOS PALSAR(L)青藏高原北麓河地区青藏铁路、青藏公路和输电塔上的沉降量为3~7 mm53
ALOS PALSAR(L)青藏高原研究区最大抬升量为16 cm,最大沉降量为28 cm54
Radarsat-2(C)加拿大巴芬岛Iqaluit机场2012年5月23日至9月20日的垂直形变量为1~12.5 cm55
ALOS PALSAR(L)东北多年冻土区研究区2010年累计形变量为4~16 cm56
TerraSAR-X(X)青藏高原北麓河地区沉降量为0~11.3 cm,抬升量为0~11.4 cm57
TerraSAR-X(X)东北多年冻土区长春至双辽高速公路段2017年的3月2~24日路基沿线形变为-1.29~3.66 mm;3月24日至4月26日为-0.74~-10.15 mm;4月26日至5月29日为-1.24~-8.56 mm29
Table 2  Application of D-InSAR technology in permafrost deformation monitoring
Fig. 3  Combination characteristics of PS technology and SBAS technology SAR image62
Fig. 4  Schematic diagram of the state of the active layer during the melting season
1 QIU Guoqing, LIU Jingren, LIU Hongxu, et al. Permafrost dictionary[M]. Lanzhou: Gansu Science and Technology Press, 1994.
1 邱国庆, 刘经仁, 刘鸿绪, 等. 冻土学词典[M]. 兰州: 甘肃科学技术出版社, 1994.
2 Institute of Permafrost, Siberian Branch of the Soviet Academy of Sciences. General permafrost science [M]. Beijing: Science Press, 1988.
2 苏联科学院西伯利亚分院冻土研究所. 普通冻土学[M]. 北京:科学出版社, 1988.
3 ZHANG T, HEGINBOTTOM J A, BARRY R G, et al. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere[J]. Polar Geography, 2000, 23(2):132-154.
4 ZHANG T, BARRY R G, KNOWLES K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 2008, 31(1/2):47-68.
5 ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Permafrost in China [M]. Beijing: Science Press, 2000.
5 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
6 ZHOU Youwu, GUO Dongxin. Main characteristics of permafrost in China [J]. Journal of Glaciology and Geocryology, 1982,4(1): 1-19.
6 周幼吾, 郭东信. 我国多年冻土的主要特征[J]. 冰川冻土, 1982,4(1):1-19.
7 STOCKER T F. The closing door of climate targets[J]. Science,2013,339(6 117): 280-282.
8 PENG X, ZHANG T, FRAUENFELD O W, et al. Evaluation and quantification of surface air temperature over Eurasia based on CMIP5 models[J]. Climate Research, 2018, 77: 167-180.
9 GUO Donglin, LI Duo, HUA Wei. Quantifying air temperature evolution in the permafrost region from 1901 to 2014[J]. International Journal of Climatology, 2017, 38: 66-76.
10 CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau [J]. China Science Bulletin, 2019, 64: 2 783-2 795.
10 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64: 2 783-2 795.
11 ZHAO Lin, CHENG Guodong. Permafrost and ecological effects on the Qinghai Tibet Plateau [C]//Summary of the advanced symposium on ecological protection and sustainable development on the Three-River Regions. 2005. [赵林, 程国栋. 青藏高原多年冻土及其生态效应[C]//三江源区生态保护与可持续发展高级学术研讨会论文摘要汇编. 2005.]
12 NIU Dongxing, LI Yong, HAN Longwu. Analysis of engineering effect of heat safeguard in permafrost regions along Qinghai-Tibet Railway[J]. Journal of Railway Engineering Society, 2012, 29(3): 26-29.
12 牛东兴, 李勇, 韩龙武. 青藏铁路多年冻土区路基热防护工程效果分析[J]. 铁道工程学报, 2012, 29(3): 26-29.
13 WU Qingbai, LIU Yongzhi, ZHANG Jianming, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes, 2002, 13(3): 199-205.
14 CIRO G A, ALFARO M C. Adaptation strategies for road embankments on permafrost affected by climate warming[C]// EIC climate change technology. IEEE, 2007:1-10.
15 HONG E, PERKINS R, TRAINOR S. Thaw settlement hazard of permafrost related to climate warming in Alaska[J]. Arctic, 2014, 67(1):93.
16 GE Jianjun. Influence of climate warming on subgrade in permafrost regions of Qinghai Tibet Railway [J]. Subgrade Engineering, 2008(3): 6-8.
16 葛建军.气候变暖对青藏铁路多年冻土区路基影响分析[J].路基工程,2008(3):6-8.
17 LI Shuangyang, LAI Yuanming, ZHANG Mingyi, et al. Study on long-term stability of Qinghai-Tibet Railway embankment[J]. Cold Regions Science and Technology, 2009, 57(2/3):139-147.
18 LIU Xiaohui. Study on reliability of permafrost roadbed in the Qinghai-Tibet Railway[D]. Lanzhou: Lanzhou Jiaotong University, 2015.
18 刘小慧. 青藏铁路多年冻土路基可靠度研究[D].兰州:兰州交通大学,2015.
19 LIU Hui. The rearch of the deformation rules of Qinghai-Tibet Railway frozen soil embankment[D]. Chongqing: Southwest Jiaotong University, 2011.
19 刘慧. 青藏铁路冻土路基变形规律研究[D].重庆:西南交通大学,2011.
20 ZHANG Zhongqiong, WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511.
20 张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3):505-511.
21 LI Xiangying, QIN Dahe, XIAO Cunde, et al. Progress regarding climate change during recent years[J]. Chinese Science Bulletin, 2011,56(36): 3 029-3 040.
21 李向应, 秦大河, 效存德, 等. 近期气候变化研究的一些最新进展[J]. 科学通报, 2011,56(36): 3 029-3 040.
22 YAO Tandong, ZHU Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006,21(5): 459-464.
22 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006,21(5):459-464.
23 BOORMAN L. Climate change 1995—impacts, adaptations and mitigation of climate change: scientific-technical analyses: contribution of working group II to the second assessment report of the intergovernmental panel on climate change: cambridge University Press, Camb[J]. Biological Conservation, 1997,81(3):187-189.
24 WANG Shuangjie, LI Zhulong. Research on highway construction technology in the permafrost region of China[J]. Journal of Highway and Transportation Research and Development, 2008, 25(1): 1-9.
24 汪双杰, 李祝龙. 中国多年冻土地区公路修筑技术研究[J]. 公路交通科技, 2008, 25(1):1-9.
25 LIU Yongzhi, WU Qingbai, ZHANG Jianming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10-15.
25 刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15.
26 MA Wei, LIU Duan, WU Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579.
26 马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 571-579.
27 MA Fuxun, XI Ruijie, XU Nan. Analysis of railway subgrade frost heave deformation based on GPS[J]. Geodesy and Geodynamics, 2016, 7(2): 143-147.
28 LI Shanshan. The study of using SBAS to monitor of frozen soil along Qinghai-Tibet Railway[D]. Changsha: Central South University, 2012.
28 李珊珊. 基于SBAS技术的青藏铁路区冻土形变监测研究[D]. 长沙:中南大学, 2012.
29 WANG Shujuan, CHEN Zhiguo, QIN Weijun, et al. Using DInSAR to monitor frost heaving and thaw settlement deformation of highway subgrade in seasonal frozen soil zone[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018,42(1):58-62.
29 王书娟, 陈志国, 秦卫军, 等. 利用DInSAR技术监测季冻区公路路基冻胀融沉变形[J]. 武汉理工大学学报:交通科学与工程版, 2018,42(1):58-62.
30 ZHAO Rong, LI Zhiwei, HU Jun. InSAR monitoring and modeling of thickness change of permafrost active layer on the Qinghai Tibet Plateau[C]//Annual Meeting of Chinese Geoscience Union. Beijing, 2014. [
30 赵蓉, 李志伟, 胡俊. 青藏高原冻土活动层厚度变化的InSAR监测与建模[C]//2014年中国地球科学联合学术年会.北京,2014.]
31 TAN Qulin, WEI Qingchao, YANG Songlin. Discussion on monitoring the subsidence of subgrade in permafrost region with satellite D-InSAR technology[J]. Journal of Railway Engineering Society, 2010, 27(1): 4-9.
31 谭衢霖, 魏庆朝, 杨松林. 卫星遥测高原冻土路基沉降变形研究初探[J]. 铁道工程学报, 2010, 27(1):4-9.
32 ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research, 1986, 91(B5):4 993.
33 GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research Atmospheres, 1989, 94(B7):9 183-9 191.
34 ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017(10): 519-535.
34 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017(10):519-535.
35 Yongyao MAI. Principle and application of InSAR interferometry[J]. The Science Education Article Collects, 2007(10): 219-220.
35 麦永耀. 合成孔径雷达干涉测量InSAR原理及其应用[J]. 科教文汇, 2007(10):219-220.
36 LIU Guoxiang, CHEN Qiang, LUO Xiaojun, et al. Principle and application of InSAR [M]. Beijing: Science Press, 2019.
36 刘国祥, 陈强, 罗小军,等. InSAR原理与应用[M]. 北京:科学出版社, 2019.
37 GEISSLER K, MASCIADRI E. Meteorological parameter analysis above Dome C using data from the European Centre for medium‐range weather forecasts[J]. Publications of the Astronomical Society of the Pacific, 2006, 118(845):1 048-1 065.
38 MESINGER F, DIMEGO G, KALNAY E, et al. North American regional reanalysis[J]. Bulletin of the American Meteorological Society, 2006, 87(3):343-360.
39 AGRAM P S, JOLIVET R, RIEL B, et al. New radar interferometric time series analysis toolbox released[J]. EOS, Transactions American Geophysical Union, 2013, 94(7):69-70.
40 LIAO Mingsheng, WANG Teng. Time series InSAR technology and application [M]. Beijing: Science Press, 2014.
40 廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京:科学出版社, 2014.
41 ROGERS A E E. Venus: mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3 895):797-799.
42 FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing,2000, 38(5):2 202-2 212.
43 BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,40(11):2 375-2 383.
44 QUIROZ P L, DOIN M P, TUPIN F, et al. Time series analysis of Mexico City subsidence constrained by radar interferometry[J]. Journal of Applied Geophysics, 2009, 69(1):1-15.
45 FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3 460-3 470.
46 HOOPER A, SEGALL P, ZEBKER H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research, 2007, 112(B7):B07407.
47 PERISSIN D, WANG T. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280.
48 GABRIEL A K, GOLDSTEINR M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research Solid Earth,1989,94(B7): 9 183-9 191.
49 WANG Zhijun, LI Shusun. Detection of winter frost heaving of the active layer of Arctic permafrost using SAR differential interferograms: geoscience and Remote Sensing Symposium, 1999[C]// IGARSS '99 Proceedings. IEEE 1999 International, 1999.
50 LI Zhen, LI Xinwu, LIU Yongzhi, et al. Detecting the displacement field of thaw settlement by means of SAR interferometry[J].Journal of Glaciology and Geocryology, 2004, 26 (4): 389-396.
50 李震, 李新武, 刘永智, 等. 差分干涉SAR冻土形变检测方法研究[J]. 冰川冻土, 2004, 26(4):389-396.
51 SINGHROY V, COUTURE R, ALASSET P J, et al. InSAR monitoring of landslides on permafrost terrain in Canada[C]// 2007 IEEE international geoscience and remote sensing symposium. IEEE, 2007.
52 WANG Ping, REN Xiaochong, YIN Hongjie, et al. The study of monitoring Qinghai-Tibet Plateau frozen ground motion from PALSAR data[J]. Geotechnical Investigation & Surveying, 2010(1): 59-66.
52 王平, 任小冲, 尹宏杰, 等. 基于PALSAR数据的青藏高原地区冻土形变监测[J]. 工程勘察, 2010(1):59-66.
53 XIE Chou, LI Zhen, LI Xinwu. A study of deformation in permafrost regions of Qinghai-Tibet Plateau based on ALOS/PALSAR D-InSAR interferometry[J]. Remote Sensing for Land & Resources, 2008(3): 15-19.
53 谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究[J].国土资源遥感, 2008(3):15-19.
54 HU Bo, WANG Hansheng, JIA Lulu, et al. Using DInSAR to monitor deformation of frozen ground in Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2010(5): 57-60.
54 胡波, 汪汉胜, 贾路路, 等. DInSAR技术监测青藏高原冻土形变的试验研究[J]. 大地测量与地球动力学, 2010(5):57-60.
55 SHORT N, LEBLANC A M, SLADEN W, et al. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada[J]. Remote Sensing of Environment, 2014, 141: 40-51.
56 WANG Chunjiao. Land surface deformation research of permafrost degradation area in Northeast China based on D-InSAR [D]. Harbin: Northeast Forestry University, 2015.
56 王春娇. 基于D-InSAR的东北多年冻土退化区地表形变研究[D]. 哈尔滨:东北林业大学, 2015.
57 WANG Chao, ZHANG Hong, TANG Yixian, et al. Fine permafrost deformation features observed using TerraSAR-X ST mode InSAR in Beiluhe of the Qinghai-Tibet Plateau, West China[C]// 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2015.
58 SHORT N, BRISCO B, COUTURE N, et al. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada[J]. Remote Sensing of Environment, 2011, 115(12):3 491-3 506.
59 ZHOU Huayun. Monitoring and analysis of ground deformation in permafrost region of Wudaoliang based on SBAS-InSAR technology [D]. Lanzhou: Lanzhou Jiaotong University, 2018.
59 周华云. 基于SBAS-InSAR技术对五道梁多年冻土区地面形变监测与分析[D]. 兰州:兰州交通大学, 2018.
60 XIE Chou, LI Zhen, XU Ji, et al. Analysis of deformation over permafrost regions of Qinghai-Tibet Plateau based on permanent scatterers[J]. International Journal of Remote Sensing, 2010, 31(7/8):1 995-2 008.
61 CHEN Jie, LIU Lin, ZHANG Tingjun, et al. Using persistent scatterer interferometry to map and quantify permafrost thaw subsidence: a case study of eboling mountain on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(10):2 663-2 676.
62 WANG Zhanwei. Research on landslide identification method of datong county in qinghai based on SBAS-InSAR technology[D]. Chengdu: ChengduUniversity of Technology, 2019.
62 王战卫. 基于SBAS-InSAR技术的青海大通县滑坡识别方法研究[D]. 成都:成都理工大学, 2019.
63 WANG Sai, XU Bing, SHAN Wei, et al. Monitoring the degradation of island permafrost using time-series InSAR technique: a case study of Heihe, China[J]. Sensors, 2019, 19(6): 1 364.
64 ZENG Xujing. Monitoring island permafrost deformation over Bei'an-Heihe expressway based on Sentinel-1A data[D]. Harbin: Northeast Forestry University, 2017.
64 曾旭婧. 基于Sentinel-1A 的北黑高速路段多年岛状冻土形变研究[D]. 哈尔滨:东北林业大学, 2017.
65 QU T, XU Q, SHAN W, et al. Deformation monitoring of high-latitude permafrost region of northeastern China with time series insar technique[C]// The international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XLII-2/W13. Enschede, The Netherlands, 2019.
66 XIE Chou, LI Zhen, LI Xinwu. A improved permanent scatterers method for analysis of deformation over permafrost regions of the Qinghai-Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 2009(10): 69-73.
66 谢酬, 李震, 李新武. 青藏高原冻土形变监测的永久散射体方法研究[J]. 武汉大学学报:信息科学版, 2009(10):69-73.
67 LI Zhen, TANG Panpan, ZHOU Jianmin, et al. Permafrost environment monitoring on the Qinghai-Tibet Plateau using time series ASAR images[J]. International Journal of Digital Earth, 2015, 8(10):840-860.
68 CHEN Fulong, LIN Hui, LI Zhen, et al. Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123:532-540.
69 CHEN Fulong, LIN Hui, ZHOU Wei, et al. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China[J]. Remote Sensing of Environment, 2013, 138:10-18.
70 JIA Yuanyuan, KIM J W, SHUM C K, et al. Characterization of active layer thickening rate over the northern Qinghai-Tibetan Plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007-2009[J]. Remote Sensing, 2017, 9(1): 84.
71 DAOUT S, DOIN M P, PELTZER G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2):901-909.
72 WANG Chao, ZHANG Zhengjia, ZHANG Hong, et al. Active layer thickness retrieval of Qinghai-Tibet permafrost using the TerraSAR-X InSAR technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4 403-4 413.
73 ZHANG Zhengjia. Research on Qinghai-Tibet permafrost environment and engineering using high resolution SAR image[D]. Beijing: University of Chinese Academy of Sciences, 2017.
73 张正加. 高分辨率SAR数据青藏高原冻土环境与工程应用研究[D]. 北京:中国科学院大学, 2017.
74 ZHANG Zhengjia, WANG Chao, ZHANG Hong, et al. Analysis of permafrost region coherence variation in the Qinghai-Tibet Plateau with a high-resolution TerraSAR-X image[J]. Remote Sensing, 2018, 10(2):298.
75 ZHOU Huayun, ZHAO Lin, TIAN Liming, et al. Monitoring and analysis of surface deformation in the permafrost area of Wudaoliang on the Tibetan Plateau based on Sentinel-1 data[J]. Journal of Glaciology and Geocryology, 2019(3):525-536.
75 周华云, 赵林, 田黎明, 等. 基于Sentinel-1数据对青藏高原五道梁多年冻土区地面形变的监测与分析[J]. 冰川冻土, 2019(3):525-536.
76 LI Shanshan, LI Zhiwei, HU Jun, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013(5): 58-68.
76 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013(5):58-68.
77 KU Ou. Monitoring seasonal permafrost deformation based on SBAS InSAR [J]. Mine Surveying, 2014(3): 90-95.
77 库欧. 基于SBAS-InSAR的冻土季节性形变监测[J]. 矿山测量, 2014(3):90-95.
78 LI Yongsheng, ZHANG Jingfa, LI Zhenhong, et al. Measurement of subsidence in the Yangbajing geothermal fields, Tibet, from TerraSAR-X InSAR time series analysis[J]. International Journal of Digital Earth, 2015,9(7):697-709.
79 CHANG L, HANSSEN R F. Detection of permafrost sensitivity of the Qinghai-Tibet railway using satellite radar interferometry[J]. International Journal of Remote Sensing, 2015,36(3): 691-700.
80 ZHAO Rong, LI Zhiwei, FENG Guangcai, et al. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling[J]. Remote Sensing of Environment, 2016, 184:276-287.
81 CHEN Yuxing, JIANG Liming, LIANG Linlin, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset[J]. Chinese Journal of Geophysics, 2019, 62(7): 2 441-2 454.
81 陈玉兴, 江利明, 梁林林, 等. 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2 441-2 454.
82 LIU Lin, ZHANG Tingjun, WAHR J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska[J]. Journal of Geophysical Research, 2010, 115(F3):F03023.
83 EPPLER J, KUBANSKI M, SHARMA J, et al. High temporal resolution permafrost monitoring using a multiple stack InSAR technique[J]. International Archives of the Photogrammetrys Remote Sensing and Spatial Information Sciences, 2015,XL-7/W3: 1 171-1 176.
84 RUDY A C A, LAMOUREUX S F, TREITZ P, et al. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 51-61.
85 EPPLER J, KUBANSKI M, SHARMA J, et al. High temporal resolution permafrost monitoring using a multiple stack InSAR technique[C]//The international archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-7/W3, 2015 36th International Symposium on Remote Sensing of Environment. Berlin, Germany, 2015.
86 LIU Lin, JAFAROV E E, SCHAEFER K M, et al. InSAR detects increase in surface subsidence caused by an Arctic tundra fire[J]. Geophysical Research Letters, 2014, 41(11):3 906-3 913.
87 MOLAN Y E, KIM J W, LU Z, et al. Modeling wildfire-induced permafrost deformation in an Alaskan Boreal Forest using InSAR observations[J]. Remote Sens-Basel, 2018, 10(3): 405.
88 MICHAELIDES R J, SCHAEFER K, ZEBKER H A, et al. Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the Remotely Sensed Active Layer Thickness (ReSALT) algorithm[J]. Environmental Research Letters, 2018, 14(3): 035007.
89 LIU Lin, SCHAEFER K, GUSMEROLI A, et al. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska[J]. The Cryosphere, 2014, 8(3):815-826.
90 LIU Lin, SCHAEFER K, CHEN A, et al. Remote sensing measurements of thermokarst subsidence using InSAR[J]. Journal of Geophysical Research Earth Surface, 2015, 120(9):1 935-1 948.
91 HU Yufeng, LIU Lin, LARSON K M, et al. GPS Interferometric reflectometry reveals cyclic elevation changes in thaw and freezing seasons in a permafrost area (Barrow, Alaska)[J]. Geophysical Research Letters, 2018, 45(11): 5 581-5 589.
92 PANG Qiangqiang, LI Shuxun, WU Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006,28(3): 390-395.
92 庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006,28(3):390-395.
93 ZHANG Tingjun, ARMSTRONG R L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001,28(5):763-766.
94 ZHAO Lin. freeze thaw process of permafrost active layer and seasonal change of permafrost in Qinghai Tibet Plateau [D]. Beijing: Chinese Academy of Sciences, 2004.
94 赵林.青藏高原多年冻土活动层的冻融过程以及季节冻土的变化[D].北京:中国科学院,2004.
95 CAO Bin, GRUBER S, ZHANG Tingjun, et al. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China[J]. Journal of Geophysical Research: Earth Surface,2017, 122(3): 574-591.
96 JAFAROV E, PARSEKIAN A D, SCHAEFER K, et al. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow[J]. Alaska, Geoscience Data Journal, 2018, 4: 72-79.
97 GUSMEROLI A, LIU L, ZHANG T, et al. Active layer stratigraphy and organic layer thickness at a thermokarst site in Arctic Alaska identified using ground penetrating radar[J]. Arctic Antarctic and Alpine Research, 2015,47(2): 195-202.
98 CHEN A, PARSEKIAN A, SCHAEFER K, et al. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska[J]. Geophysics, 2016,81(2): H1-H11.
99 KONG Ying. The change and carbon emission of permafrost over the Northern Hemisphere under 1.5 ℃ and2.0 ℃ warming[D]. Lanzhou: Lanzhou University, 2018.
99 孔莹. 1.5℃和2.0 ℃温升条件下北半球多年冻土的变化及其碳释放[D]. 兰州:兰州大学, 2018.
100 LIU Lin, SCHAEFER K, ZHANG Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1). DOI: .
doi: 10.1029/2011JF002041
101 ZHAO Rong. Permafrost deformation model establishment and active layer thickness inversion based on SBAS-InSAR [D]. Changsha: Central South University, 2014.
101 赵蓉. 基于SBAS-InSAR的冻土形变建模及活动层厚度反演研究[D]. 长沙:中南大学, 2014.
102 LI Zhiwei, ZHAO Rong, HU Jun, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports, 2015, 5:15542.
103 ZHANG Xuefei, ZHANG Hong, WANG Chao, et al. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai-Tibetan Plateau using Sentinel-1 data[J]. Remote Sensing, 2019, 11: 1000.
104 ZHAO Tao, ZHANG Mingyi, LU Jianguo, et al. Correlation between the ground surface deformation and influential factors in permafrost regions[J/OL]. Journal of Harbin Institute of Technology,2020. [2021-06-22]..
104 赵韬,张明义,路建国,等. 多年冻土区地表变形与影响因素相关性分析[J/OL]. 哈尔滨工业大学学报,2020. [2021-06-22]. .
105 PULLMAN E R, SHUR J Y. Thaw settlement in soils of the Arctic Coastal Plain, Alaska[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(3):468-476.
106 ZHANG Zhengjia, WANG Mengmeng, WU Zhijie, et al. Permafrost deformation monitoring along the Qinghai-Tibet Plateau engineering corridor using InSAR observations with Multi-Sensor SAR datasets from 1997-2018[J]. Sensors, 2019, 19: 5306.
107 O'NEILL H B, SMITH S L, DUCHESNE C. Long-term permafrost degradation and thermokarst subsidence in the Mackenzie Delta Area indicated by thaw tube measurements[C]// International conference on cold regions engineering,Canadian permafrost conference, 2019.
108 STRELETSKIY D A, SHIKLOMANOV N I, LITTLE J D, et al. Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962-2015[J]. Permafrost & Periglacial Processes, 2017, 28(3):566-572.
109 GRUBER S. Ground subsidence and heave over permafrost: hourly time series reveal inter-annual, seasonal and shorter-term movement caused by freezing, thawing and water movement[Z]. 2019. DOI:.
doi: 10.5194/tc-2019-227
No Suggested Reading articles found!