Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2019, Vol. 34 Issue (3): 275-287    DOI: 10.11867/j.issn.1001-8166.2019.03.0275
    
Research Progress and Prospect of Integrated Drought Monitoring Based on Multi-source Information
Xiaowei Jiang1,2(),Jianjun Bai1,2(),Xianfeng Liu1,2
1. College of Geography and Tourism,Shaanxi Normal University,Xi’an 710119,China
2. National Demonstration Center for Experimental Geography Education,Shaanxi Normal University,Xi’an 710119,China
Download:  HTML  PDF (2146KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

At present, drought monitoring has changed from single factor to multi-factor comprehensive direction. In order to better promote the development of comprehensive drought monitoring theory and related models, the conceptual connotation of comprehensive drought monitoring was comprehensively and systematically analyzed, and the construction methods of comprehensive drought monitoring model were sorted out, which were divided into five

methods

Water balance model method, linear model combination method, multi-variable joint distribution function method, principal component analysis method and multi-source information data mining method. Furthermore, in view of the current challenges and shortcomings of integrated drought monitoring, the direction of future development of integrated drought monitoring model was put forward, that is, at the theoretical level: The first is to study the internal mechanism of drought and its occurrence and development process, clarify the relationship among the factors affecting drought, and construct a comprehensive quantitative drought monitoring model integrating multiple factors; The second is to enhance the pertinence of drought monitoring model, develop suitable drought monitoring model according to different regions, underlying surface, growing season, etc.;The third is to construct the precision verification index system of comprehensive monitoring model for drought in view of the difficulty of model validation. At the technical level, the integration and fusion of drought-related multi-source information is studied to improve its comprehensive utilization level and provide abundant data support and technical support for drought monitoring.

Key words:  Drought      Multisource information      Integrated monitoring model.     
Received:  24 November 2018      Published:  28 April 2019
ZTFLH:  P407  
Fund: Project supported by the Shaanxi Natural Science Foundation “Effects of soil texture, crop type and phenological period on remote sensing drought index”(No.2016JM4016);The National Natural Science Foundation of China “Study on integrated monitoring method of agricultural drought based on integrating multiple elements and their time delay effect”(No.41801333)
Corresponding Authors:  Jianjun Bai     E-mail:  648762060@qq.com;bjj@snnu.edu.cn
About author:  Jiang Xiaowei(1992-), female, Tongchuan City, Shaanxi Province, Ph.D student. Reserch areas include remote sensing of resources and environment and agricultural drought. E-mail:648762060@qq.com|Jiang Xiaowei(1992-), female, Tongchuan City, Shaanxi Province, Ph.D student. Reserch areas include remote sensing of resources and environment and agricultural drought. E-mail:648762060@qq.com|Bai Jianjun(1969-), male, Weinan City, Shaanxi Province, Professor. Reserch areas include remote sensing of resources and environment and agricultural drought. E-mail:bjj@snnu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xiaowei Jiang
Jianjun Bai
Xianfeng Liu

Cite this article: 

Xiaowei Jiang, Jianjun Bai, Xianfeng Liu. Research Progress and Prospect of Integrated Drought Monitoring Based on Multi-source Information. Advances in Earth Science, 2019, 34(3): 275-287.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2019.03.0275     OR     http://www.adearth.ac.cn/EN/Y2019/V34/I3/275

Fig. 1  Drought affecting factor
Fig. 2  The development history of main drought monitoring index
Fig. 3  The construction process of Integrated Drought Monitoring Model
方法指标名称应用范围适应性局限性

水平衡

模型

帕默尔干旱指数(Palmer Drought Severity

Index,PDSI)

气象干旱、

农业干旱

考虑蒸散发、降水、径流对干旱的影响,从内在机理角度描述干旱具有一定的时空局限性

地表供水指数(Soil Water Stress Index,

SWSI)

农业干旱在PDSI基础上综合了积雪融水、水库蓄水对干旱的影响参数较多,不易计算
标准降水蒸散指数(Standardized Precipitation Evaporation Index,SPEI)

农业干旱、

水文干旱

多时间尺度,综合蒸散发等

干旱相关影响因素

参数较多,不易计算
线性组合美国干旱监测模型(The U.S. Drought Monitor,USDM)农业干旱监测国家、州等大尺度干旱将指标间表述为线性相关关系,难以描述非线性关系,缺乏内在机理性
美国的最佳混合NLDAS(The North American Land Data Assimilation System)的综合干旱指数(Objective Blended NLDAS Drought Index,OBNDI)农业干旱

监测国家尺度干旱,提高了

USDM监测精度

最大平均干旱指数(Grand Mean Index,GMI)气象干旱、水文干旱、农业干旱

考虑地表温度因子,用于地区、

小尺度区域干旱监测

微波综合干旱指数(Microwave Integrated Drought Index,MIDI)农业干旱基于多传感器微波遥感数据,监测地区短期干旱
旱情综合监测指数(Comprehensive Remote Sensing Drought Monitoring Index,RSI)农业干旱综合温度条件指数和植被条件指数,监测地区干旱
联合分布函数联合干旱指数(Joint Drought Index,JDI)气象干旱、水文干旱、农业干旱

基于累计降水与径流的综合干旱指数,描述变量间非线性关系。

能够进行短期风险评估

构建联合分布函数的干旱变量须具有相同边际分布。缺乏内在机理性

多变量标准化干旱指数(Multivariate

Standardized Drought Index,MSDI)

气象干旱、水文干旱、农业干旱基于累计降水和土壤水分的综合干旱指数,能够进行短期风险评估
基于标准帕默尔干旱指数(Standardized Palmer Drought Index,SPDI)的综合干旱指数(Standardized Palmer Drought Index-Joint Drought Index ,SPDI-JDI)气象干旱、水文干旱、农业干旱

具有不同的时间尺度。

能够进行短期风险评估

主成分

分析

干旱综合指数(Aggregate Drought Index,ADI)气象干旱、水文干旱、农业干旱综合多源信息,据研究区地域特点选择不同变量,具有一定的普适性只能表述线性相关关系,且假设第一主成分表示原数据最大方差

非线性干旱综合指数(Multivariate Drought

Index,MDI)

气象干旱、

农业干旱

基于核熵成分分析(KECA)法,

优化了模型降维过程

认为熵是信息最大输出,只能描述非线性变量关系
数据挖掘

干旱综合监测指数(Standardized Drought

Index,SDI)

农业干旱、

气象干旱

半定量半经验干旱监测模型。解决干旱指标时空尺度不一致问题建模所需指标数据量较大,数据收集较为困难

植被干旱响应指数(Vegetation Drought

Response Index,Veg-DRI)

农业干旱

用于国家尺度干旱监测。描述植被(生长期)对干旱的响应力。

高空间、时间分辨率

难以描述非线性关系,缺乏内在机理性
Table 1  The main integrated drought index
Fig.4  The construction flow chart of Integrated Drought Monitoring Model based on multiple data mining methods
Fig.5  The future research direction of drought monitoring with integrated multi-source information
1 GuanXiaodan, ShiRui, KongXiangning, et al. An overview of researches on land-atmosphere interaction over semi-arid region under global changes[J]. Advances in Earth Science, 2018, 33(10): 995-1 004.
1 管晓丹,石瑞,孔祥宁,等. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展,2018,33(10) : 995-1 004.
2 ZhangXiang, ChenNengcheng, HuChuli, et al. Spatio-temporal distribution of three kinds of flash droughts over agricultural land in China from 1983 to 2015[J]. Advances in Earth Science, 2018, 33(10) : 1 048-1 057.
2 张翔,陈能成,胡楚丽,等.1983—2015年我国农业区域三类骤旱时空分布特征分析[J].地球科学进展,2018,33(10):1 048-1 057.
3 WilhiteD A. Drought as a natural hazard: Concepts and definitions[J]. Drought A Global Assessment, 2000, 1:3-18.
4 DaiA. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012, 3(1):52-58.
5 WangWenke, GongChengcheng, ZhangZaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 2018, 33(7):702-718.
5 王文科,宫程程,张在勇,等.旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7) : 702-718.
6 BurtonI. Climate change 2001: Impacts, adaptation, and vulnerability report of IPCC working group II[J]. Agricultural & Forest Meteorology, 2003, 117(1):123-124.
7 WuBingfang, MengJihua, LiQiangzi, et al. Review of overseas crop monitoring systems with remote sensing[J]. Progress in Geophysics, 2010, 25(10):1 003-1 012.
7 吴炳方,蒙继华,李强子.国外农情遥感监测系统现状与启示[J]. 地球科学进展, 2010,25(10):1 003-1 012.
8 HaoZ, SinghV P. Drought characterization from a multivariate perspective: A review[J]. Journal of Hydrology, 2015,527:668-678.
9 HeimR R, BrewerM J. The global drought monitor portal: The foundation for a global drought information system[J]. Earth Interactions, 2012, 16(15):1-28.
10 RheeJ, ImJ,CarboneG J.Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data[J]. Remote Sensing of Environment, 2010, 114(12):2 875-2 887.
11 HouborgR, RodellM, LiB,et al.Drought indicators based on model assimilated GRACE terrestrial water storage observations[J]. Water Resources Research, 2012, 48(7):2 515-2 521.
12 YangShaoe, YanNana, WuBingfang, et al. Advances in agricultural drought monitoring by remote sensing[J]. Remote Sensing Information, 2010, (1):103-109.
12 杨绍锷,闫娜娜,吴炳方.农业干旱遥感监测研究进展[J]. 遥感信息, 2010,(1):103-109.
13 LinQiao, WangPengxin, ZhangShuyu, et al.Applicability of vegetation temperature index for drought monitoring at different time scales [J]. Arid Zone Reasearch, 2016, 33(1):186-192.
13 林巧,王鹏新,张树誉,等.不同时间尺度条件植被温度指数干旱监测方法的适用性分析[J].干旱区研究, 2016, 33(1):186-192.
14 XiaoranLü, YinXiaotian, GongEdu, et al. Temporal and spatial analysis of agricultural drought in Yunnan Province based on vegetation condition index [J]. Journal of Geo-information Science, 2016, 18(12):1 634-1 644.
14 吕潇然,尹晓天,宫阿都,等.基于植被状态指数的云南省农业干旱状况时空分析[J]. 地球信息科学学报,2016,18(12):1 634-1 644.
15 DingYongjian, ZhangShiqiang. Study on water internal recycle process and mechanism in typical mountain areas of inland basins,northwest China: Progress and challenge[J]. Advances in Earth Science, 2018, 33(7): 719-727.
15 丁永建,张世强. 西北内陆河山区流域内循环过程与机理研究:现状与挑战[J].地球科学进展, 2018,33(7):719-727.
16 ZhangLili, ZhouJunju, ZhangHengwei, et al. Temporal and spatial patterns of climate drought-wet and drought event based on standard precipitation index in Shiyang River Basin[J]. Acta Ecologica Sinica, 2017, 37(3):996-1 007.
16 张利利,周俊菊,张恒玮,等.基于SPI的石羊河流域气候干湿变化及干旱事件的时空格局特征研究[J]. 生态学报, 2017,37(3):996-1 007.
17 SheffieldJ, GotetiG, WenF, et al. A simulated soil moisture based drought analysis for the United States[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D24).DOI:.
doi: 10.1029/2004JD005182
18 NarasimhanB, SrinivasanR. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring[J]. Agricultural & Forest Meteorology, 2005, 133(1):69-88.
19 MendicinoG, SenatoreA, VersaceP. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate[J]. Journal of Hydrology, 2008, 357(3/4):282-302.
20 PalmerW. Meteorological Drought[M]. Washington DC:U.S.Department of Commerce Weather Bureau Research Paper, 1965.
21 HuangYouxin, LiuXiuguo, ShenYonglin, et al. Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16):186-195.
21 黄友昕, 刘修国, 沈永林,等. 农业干旱遥感监测指标及其适应性评价方法研究进展[J]. 农业工程学报, 2015, 31(16):186-195.
22 HanYuping, ZhangGongjin, WangFuqiang. Research progress on monitoring indexes of agricultural drought[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2013, 34(1):74-78.
22 韩宇平,张功瑾,王富强.农业干旱监测指标研究进展[J]. 华北水利水电大学学报:自然科学版, 2013,34(1):74-78.
23 SteinemannA. Drought indicators and triggers: A stochastic approach to evaluation[J]. Jawra Journal of the American Water Resources Association, 2003, 39(5):1 217-1 233.
24 AndersonM C, HainC, WardlowB, et al. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States[J]. Journal of Climate, 2011, 24(8):2 025-2 044.
25 AlleyW M. The Palmer Drought Severity Index: Limitations and assumptions[J]. Journal of Applied Meteorology, 1984, 23(23):1 100-1 109.
26 ZhangB, WuP, ZhaoX, et al. A drought hazard assessment index based on the VIC-PDSI model and its application on the Loess Plateau, China[J]. Theoretical & Applied Climatology, 2013, 114(1/2):125-138.
27 ShaferB, DezmanL. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas[C]// Paper Presented at Proceedings of the Western Snow Conference.Nevada:Western Snow Conference, 1982.
28 DjerbouaiS, Souag-GamaneD. Drought forecasting using neural networks, wavelet neural networks, and stochastic models: Case of the Algerois Basin in North Algeria[J]. Water Resources Management, 2016, 30(7):2 445-2 464.
29 HeimR R J. A review of twentieth-century drought indices used in the United States[J]. American Meteorological Society, 2002, 83(8):1 149-1 165.
30 McKeeT B, DoeskenN J, KleistJ. The relationship of drought frequency and duration to time scales[C]// Proceedings of the 8th Conference on Applied Climatology. Boston, MA: American Meteorological Society, 1993: 179-183.
31 WellsN, GoddardS, HayesM J. A self-calibrating palmer drought severity index[J]. Journal of Climate, 2010, 17(12):2 335-2 351.
32 VicenteserranoS M, BegueríaS, LópezmorenoJ I. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010, 23(7):1 696-1 718.
33 ZhangQiang, JuXiaosheng, LiShuhua. Comparison of three drought indices and determination of new indicators[J]. Meteorological Science and Technology, 1998,1 (2):48-52.
33 张强,鞠笑生,李淑华.三种干旱指标的比较和新指标的确定[J]. 气象科技, 1998, 1(2):48-52.
34 WangJinsong, GuoJiangyong, JizuQing. Application of a kind of K Drought Index in the spring drought analysis in Northwest China[J]. Journal of Natural Resources, 2007, 22(5): 709-717.
34 王劲松,郭江勇,倾继祖.一种K干旱指数在西北地区春旱分析中的应用[J]. 自然资源学报, 2007,22(5):709-717.
35 FengJianshe, WangJianyuan, WangXintang, et al. The application of Relative Humidity Index to agricultural drought monitoring[J]. Journal of Applied Meteorological Science, 2011, 22(6):766-772.
35 冯建设,王建源,王新堂,等.相对湿润度指数在农业干旱监测业务中的应用[J]. 应用气象学报, 2011,22(6):766-772.
36 LiuZongyuan, ZhangJianping, LuoHongxia, et al. Temporal and spatial distribution of maize drought in southwest of China based on agricultural reference index for drought[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 105-115.
36 刘宗元,张建平,罗红霞,等.基于农业干旱参考指数的西南地区玉米干旱时空变化分析[J]. 农业工程学报, 2014,30(2):105-115.
37 WoliP. Quantifying Water Deficit and Its Effects on Crop Yields Using a Simple, Generic Drought Index[D]. Gainesville, FL: The University of Florida,2010.
38 ZhangYanhong, HouqiuanLü, LiSen. Applicability of crop water deficit index in agricultural drought monitoring[J]. Meteorological Science and Technology, 2008, 36(5):596-600.
38 张艳红,吕厚荃,李森.作物水分亏缺指数在农业干旱监测中的适用性[J]. 气象科技, 2008,36(5):596-600.
39 XuLingyan, WangHuimin, DuanQicai, et al. The temporal and spatial distribution of droughts during summer corn growth in Yunnan Province based on SPEI[J]. Resources Science, 2013, 35(5):1 024-1 034.
39 许玲燕,王慧敏,段琪彩,等.基于SPEI的云南省夏玉米生长季干旱时空特征分析[J]. 资源科学,2013,35(5):1 024-1 034.
40 ZhouLei, WuJianjun, ZhangJie. Remote sensing-based drought monitoring approach and research progress[J]. Scientia Geographica Sinica, 2015, 35(5):630-636.
40 周磊,武建军,张洁.以遥感为基础的干旱监测方法研究进展[J]. 地理科学, 2015,35(5):630-636.
41 PengC, DengM, DiL, et al. Delivery of agricultural drought information via web services[J]. Earth Science Informatics, 2015, 8(3):527-538.
42 LawrimoreJ, HeimR R J, SvobodaM, et al. Beginning a New Era of drought monitoring across North America[J]. Bulletin of the American Meteorological Society, 2002, 83(8):1 191-1 192.
43 SvobodaM, LecomteD, HayesM, et al. The drought monitor[J]. Bulletin of the American Meteorological Society, 2002, 83(8):1 181-1 190.
44 LettenmaierD, MoK. Objective drought classification using multiple land surface models[J]. Journal of Hydrometeorology, 2013, 15(3):990-1 010.
45 XiaY. Calibration of LaD Model in the Northeast United States using observed annual streamflow[J]. Journal of Hydrometeorology, 2007, 8(5):1 098-1 110.
46 XiaY, Peters-LidardC D, MockoD, et al. Application of USDM statistics in NLDAS-2: Optimal blended NLDAS drought index over the continental United States[J]. Journal of Geophysical Research Atmospheres, 2014, 119(6):2 947-2 965.
47 XiaY, EkM B, MockoD, et al. Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble[J]. Journal of Hydrometeorology, 2013, 15(4):1 636-1 650.
48 HayesM, SvobodaM, WallN, et al. The Lincoln declaration on drought indices: Universal meteorological drought index recommended[J]. Bulletin of the American Meteorological Society, 2011, 92(4):485-488.
49 WardlowB D, AndersonM C, VerdinJ P, et al. Remote Sensing of Drought: Innovative Monitoring Approaches[M]. Boca Raton:CRC Press,2012:591-594.
50 LiYu, LiuYuan. Long-term reconstructions and simulations of the hydrological cycle in the inland rivers, arid China: A case study of the Shiyang River drainage basin[J]. Advances in Earth Science, 2017, 32(7):731-743.
50 李育,刘媛.干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J].地球科学进展,2017,32(7):731-743.
51 ZargarA, SadiqR, NaserB, et al. A review of drought indices[J]. Environmental Reviews, 2011, 19(1):333-349.
52 WangPengxin, GongJianya, LiXiaowen. Vegetation_temperature condition index and its application for drought monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5):412-418.
52 王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报:信息科学版, 2001,26(5):412-418.
53 XiaoXiongxin, ZhangTingjun. Passive microwave remote sensing of snow depth and snow water equivalent: Overview[J]. Advances in Earth Science,2018,33(6):590-605.
53 肖雄新,张廷军.基于被动微波遥感的积雪深度和雪水当量反演研究进展[J].地球科学进展,2018,33(6):590-605.
54 FanLiaosheng, JiangJihong, ShengHui, et al. Reverse of soil moisture for smmer dought priod in Hangzhou by uings TVDI method[J]. Chinese Journal of Agrometeorology, 2009, 30(2):230-234.
54 范辽生,姜纪红,盛晖,等.利用温度植被干旱指数(TVDI)方法反演杭州伏旱期土壤水分[J].中国农业气象, 2009,30(2):230-234.
55 RheeJ, ImJ, CarboneG J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data[J]. Remote Sensing of Environment, 2010, 114(12):2 875-2 887.
56 ZhangA, JiaG. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data[J]. Remote Sensing of Environment, 2013, 134(7):12-23.
57 HaoZ, SinghV. Integrating entropy and copula theories for hydrologic modeling and analysis[J]. Entropy, 2015, 17(4):2 253-2 280.
58 LiQiangzi, YanNana, ZhangFeifei, et al. Drought monitoring and its impacts assessment in Southwest China using remote sensing in the spring of 2010[J]. Acta Geographica Sinica, 2010, 65(7):771-780.
58 李强子,闫娜娜,张飞飞,等. 2010年春季西南地区干旱遥感监测及其影响评估[J]. 地理学报,2010,65(7):771-780.
59 SatishsIyengar. Multivariate models and dependence concepts[J]. Technometrics, 1997, 40(4):353.
60 SklarA. Random variables, joint distribution functions, and copulas[J]. Kybernetika, 1973, 9(6):449-460.
61 SalvadoriG, MicheleC D. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events[J]. Water Resources Research, 2004, 40(12):229-244.
62 SalvadoriG, MicheleC D. On the use of copulas in hydrology: Theory and practice[J]. Journal of Hydrologic Engineering, 2007,12(4):369-380.
63 HaoZ, SinghV P. Entropy-Based method for bivariate drought analysis[J]. Journal of Hydrologic Engineering, 2013, 18(7):780-786.
64 BeersmaJ J, BuishandT A. Joint probability of precipitation and discharge deficits in the Netherlands[J]. Water Resources Research, 2004, 40(12):87-87.
65 KaoS C, RaoS G. A copula-based joint deficit index for droughts[J]. Journal of Hydrology, 2010, 380(1/2):121-134.
66 HaoZ, AghakouchakA. Multivariate Standardized Drought Index: A parametric multi-index model[J]. Advances in Water Resources, 2013, 57(9):12-18.
67 HaoZ, HaoF, SinghV P, et al. A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices[J]. Advances in Water Resources, 2016, 92:240-247.
68 HaoZ, AghakouchakA. Multivariate Standardized Drought Index: A parametric multi-index model[J]. Advances in Water Resources, 2013, 57(9):12-18.
69 MaM, RenL, SinghV P, et al. New variants of the Palmer drought scheme capable of integrated utility[J]. Journal of Hydrology, 2014, 519:1 108-1 119.
70 PanM, YuanX, WoodE F. A probabilistic framework for assessing drought recovery[J]. Geophysical Research Letters, 2013, 40(14):3 637-3 642.
71 HaoZ, SinghV P. Modeling multisite streamflow dependence with maximum entropy copula[J]. Water Resources Research, 2013, 49(10):7 139-7 143.
72 KeyantashJ A, DracupJ A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage[J]. Water Resources Research, 2004, 40(9):333-341.
73 WilksD S. Statistical methods in the atmospheric sciences[J]. Technometrics, 2011, 38(4):402.
74 DuL, TianQ, YuT, et al. A comprehensive drought monitoring method integrating MODIS and TRMM data[J]. International Journal of Applied Earth Observations & Geoinformation, 2013, 23(1):245-253.
75 LiQ, LiP, LiH, et al. Drought assessment using a multivariate drought index in the Luanhe River Basin of Northern China[J]. Stochastic Environmental Research & Risk Assessment, 2015, 29(6):1 509-1 520.
76 MeyerS J, HubbardK G, WilhiteD A. The relationship of climatic indices and variables to corn (maize) yields: A principal components analysis [J]. Agricultural & Forest Meteorology, 1991, 55(1/2):59-84.
77 HaoC, ZhangJ, YaoF. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China[J]. International Journal of Applied Earth Observations & Geoinformation, 2015, 35:270-283.
78 RajsekharD, SinghV P, MishraA K. Multivariate drought index: An information theory based approach for integrated drought assessment[J]. Journal of Hydrology, 2015, 526(11/12):164-182.
79 WylieB K, FosnightE A, GilmanovT G, et al. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains[J]. Remote Sensing of Environment, 2007,106(4):399-413.
80 DuLingtong. Drought Monitoring Model Based on Multi-Source Spatial Information and Its Application[D]. Nanjing:Nanjing University, 2013.
80 杜灵通.基于多源空间信息的干旱监测模型构建及其应用研究[D]. 南京:南京大学, 2013.
81 TadesseT, WilhiteD A, HarmsS K, et al. Drought monitoring using data mining techniques: A case study for Nebraska, USA[J]. Natural Hazards, 2004, 33(1):137-159.
82 WardlowB D. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation[J]. Giscience & Remote Sensing, 2008, 45(1):16-46.
83 TadesseT, WardlowB D, BrownJ F, et al. Assessing the vegetation condition impacts of the 2011 drought across the U.S. Southern Great Plains using the Vegetation Drought Response Index (VegDRI)[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1):153-169.
84 DuLingtong, TianQingjiu, WangLei, et al. A synthesized drought monitoring model based on multi-sourc remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9):126-132.
84 杜灵通,田庆久,王磊,等.基于多源遥感数据的综合干旱监测模型构建[J]. 农业工程学报, 2014,30(9):126-132.
[1] . NEW DIRECTIONS FOR NCAR IN NEXT TEN-YEAR[J]. Advances in Earth Science, 2004, 19(6): 903 -909 .
[2] Wang Yu, Zhang Gui. ON THE DESERTIFICATION AND GENESIS OF KARST STONE MOUNTAIN AREA IN EAST YUNNAN[J]. Advances in Earth Science, 2003, 18(6): 933 -938 .
[3] ZHAO Halin, ZHOU Ruilian, ZHAO Yue. ADVANCE IN SNOW ECOLOGY STUDY IN THE WORLD[J]. Advances in Earth Science, 2004, 19(2): 296 -304 .
[4] Hu Yaowu,Michael P. Richards,Liu Wu,Wang Changsui. Application of Bone Chemistry Analysis to the Studies of Hominin Dietary Evolution[J]. Advances in Earth Science, 2008, 23(3): 228 -235 .
[5] Peng Xuyang,Zhang Zhihuan,He Fengpeng,Gao Dandan,Lu Song . Vertical Distribution Characteristics and Composition of in Soil Profiles of Beijing[J]. Advances in Earth Science, 2008, 23(6): 580 -589 .
[6] SUNNe-zheng. Parameter Estimation and Experimental Design in Groundwater Modeling[J]. Advances in Earth Science, 2004, 19(3): 409 -414 .
[7] ZHOU Xiu-ji. some coginitions on earth system science[J]. Advances in Earth Science, 2004, 19(4): 513 -515 .
[8] . [J]. Advances in Earth Science, 2004, 19(6): 918 -920 .
[9] Yong Xueshan,Ma Haizhen,Gao Jianhu. A Study of AVO Equation in Dual-phase Medium and Parameter Simplification[J]. Advances in Earth Science, 2006, 21(03): 242 -249 .
[10] Liu Xiaofeng. REVIEW OF NEW IDEAS OF PETROLEUM GEOLOGY ASSOCIATED WITH ABNORMAL FLUID PRESSURE SYSTEM[J]. Advances in Earth Science, 2003, 18(2): 245 -250 .