Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2011, Vol. 26 Issue (12): 1248-1259    DOI: 10.11867/j.issn.1001-8166.2011.12.1248
Research Progress on Reconstruction of Paleofire History
Zhan Changlin1,2,4, Cao Junji1,3, Han Yongming1, An Zhisheng1
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi′an710075, China;
2. School of Mechanical Engineering, Xi′an Jiaotong University, Xi′an  710049, China;
3. Institute of Global Environmental Change, Xi′an Jiaotong University, Xi′an710049, China;
4. Graduate University of Chinese Academy of Sciences, Beijing100049, China
Download:  PDF (1666KB) 
Export:  BibTeX | EndNote (RIS)      

Fire is an important part of the Earth system. It is tightly coupled with climate, vegetation, biogeochemical cycles and human activities. The influences of fire on the global climate and ecosystems have become a hot topic in global change research. After the fire, many combustion products remain in the surrounding environment, such as black carbon, charcoal, polycyclic aromatic hydrocarbons and levoglucosan, which are widely found in oceans, lakes, rivers, soils and terrestrial eolian sediments. Moreover, some traces like fire scars of trees, variation of soil magnetic parameters also remain in these records. These records not only reflected the history of paleofire activity, but also the climatic conditions and vegetation patterns in historical period,  so as to provide clues for reconstruction of paleofire and paleoclimate. This paper summarizes the major proxies that widely used in the paleofire history reconstruction and their potential problems. Meanwhile, it also points out the direction for the development of paleofire reconstruction in the future. Although different proxies have been successfully applied in the previous studies, due to the impact of anthropogenic activities or biological disturbance, and the differences in temporal and spatial scales, there are limitations for these indicators in the reconstruction of paleofire. This is not conducive to proper understanding the relationships between fire  and  human activities, climate change and the vegetation.

Key words:  Fire      Black carbon      Fire scar of trees      Charcoal      Polycyclic aromatic hydrocarbons.     
Received:  20 August 2011      Published:  10 December 2011
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors

Cite this article: 

Zhan Changlin, Cao Junji, Han Yongming, An Zhisheng. Research Progress on Reconstruction of Paleofire History. Advances in Earth Science, 2011, 26(12): 1248-1259.

URL:     OR

[1]Scott A C. The Pre-Quaternary history of fire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 281-329.
[2]Scott A C, Glasspool I J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration [J]. Proceedings of the National Academy of Sciences,2006, 103(29): 10 861-10 865.
[3]Crutzen P J, Heidt L E, Krasnec J P, et al. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS [J]. Nature, 1979, 282: 253-256.
[4]Levine J S, Cofer Ⅲ W, Cahoon Jr D, et al. Biomass burning a driver for global change [J]. Environmental Science and Technology, 1995, 29(3): 120-125.
[5]Van der Werf G R, Randerson J T, Collatz G J, et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period [J]. Science, 2004, 303: 73-76.
[6]Lighty J S, Veranth J M, Sarofim A F. Combustion aerosols: Factors governing their size and composition and implications to human health [J]. Journal of the Air & Waste Management Association, 2000, 50(9): 1 565-1 618.
[7]Bowman D M J S, Johnston F H. Wildfire smoke, fire management, and human health [J]. EcoHealth, 2005, 2(1): 76-80.
[8]Aditama T Y. Impact of haze from forest fire to respiratory health: Indonesian experience [J]. Respirology, 2000, 5(2): 169-174.
[9]Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the Earth system [J].Science,2009, 324: 481-484.
[10]Harden J D, Trumbore S E, Stocks B J, et al. The role of fire in the boreal carbon budget [J]. Global Change Biology, 2000, 6(Suppl.1): 174-184.
[11]Preston C M. Fire's black legacy [J]. Nature Geoscience, 2009, 2(10): 674-675.
[12]Harrison S P, Marlon J R, Bartlein P J. Fire in the Earth system [C]Dodson J. Changing Climates, Earth Systems and Society. 2010: 21-48.
[13]Certini G. Effects of fire on properties of forest soils: A review [J].Oecologia,2005, 143(1):1-10.
[14]Conedera M, Tinner W, Neff C, et al. Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation [J].Quaternary Science Reviews,2009, 28(5/6): 555-576.
[15]Hallett D J, Lepofsky D S, Mathewes R W, et al. 11,000 years of fire history and climate in the mountain hemlock rain forests of southwestern British Columbia based on sedimentary charcoal [J].Canadian Journal of Forest Research,2003, 33(2): 292-312.
[16]Smith D M, Griffin J J, Goldberg E D. Elemental carbon in marine sediments: A baseline for burning [J].Science,1973, 241: 268-270.
[17]Carcaillet C. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates [J].The Holocene,2001, 11(2): 231-242.
[18]Olsson F, Gaillard M J, Lemdahl G, et al. A continuous record of fire covering the last 10,500 calendar years from southern Sweden—The role of climate and human activities[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1/2): 128-141.
[19]Kletetschka G, Banerjee S K. Magnetic stratigraphy of Chinese loess as a record of natural fires[J]. Geophysical Research Letters, 1995, 22(11): 1 341-1 343.
[20]Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J]. Marine Geology, 2003, 201(1/3): 53-65.
[21]Elias V O, Simoneit B R T, Cordeiro R C, et al. Evaluating levoglucosan as an indicator of biomass burning in Carajás, amazánia: A comparison to the charcoal record[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 267-272.
[22]Gutsell S L, Johnson E A. How fire scars are formed: Coupling a disturbance process to its ecological effect[J]. Canadian Journal of Forest Research, 1996, 26(2): 166-174.
[23]Johnson B J, Wakeham S, Gelinas Y, et al. Isotopic evidence for C4 grass expansion during the last glacial maximum and younger dryas in Northern Australia[C]American Geophysical Union, Fall Meeting, 2004.
[24]Kitzberger T, Brown P M, Heyerdahl E K, et al. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America[J].Proceedings of the National Academy of Sciences, 2007, 104(2): 543-548.
[25]Power M J, Marlon J, Ortiz N, et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics, 2008, 30(7): 887-907.
[26]Patterson W A, Edwards K J, Maguire D J. Microscopic charcoal as a fossil indicator of fire[J]. Quaternary Science Reviews,1987, 6(1): 3-23.
[27]Butler K. Interpreting charcoal in New Zealand's palaeoenvironment—What do those charcoal fragments really tell us? [J]. Quaternary International, 2008, 184(1): 122-128.
[28]Cui Zhongxie, Zhang Sanhuan, Tian Jing. The study on volcanic eruption and forest fire since Holocene in Changbai Mountain[J].Geographical Research, 1997, 16(1): 92-97.[崔钟燮,张三焕,田景. 长白山全新世以来的火山喷发活动与森林火灾研究[J]. 地理研究,1997,16(1):92-97.]
[29]Wolbach W S, Gilmour I, Anders E, et al. Global fire at the Cretaceous-Tertiary boundary[J]. Nature,1988, 334: 665-669.
[30]Lynch A H, Beringer J, Kershaw P, et al. Using the paleorecord to evaluate climate and fire interactions in Australia[J]. Annual Review of Earth and Planetary Sciences,2007, 35: 215-239.
[31]Cao J J, Zhu C S, Chow J C, et al. Black carbon relationships with emissions and meteorology in Xi'an, China[J].Atmospheric Research,2009, 94(2):194-202.
[32]Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J].Nature Geoscience,2008, 1(4): 221-227.
[33]Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J].Nature,2001, 409: 695-697.
[34]Schmidt M W I, Noack A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J].Global Biogeochemical Cycles,2000, 14(3): 777-793.
[35]Goldberg E D. Black Carbon in the Environment[M]. New York: John Wiley and Sons, 1985: 199.
[36]Masiello C A. New directions in black carbon organic geochemistry[J].Marine Chemistry,2004, 92(1/4): 201-213.
[37]Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J].Nature,2004, 427: 336-339.
[38]Dickens A F, Gélinas Y, Hedges J I. Physical separation of combustion and rock sources of graphitic black carbon in sediments[J].Marine Chemistry, 2004, 92(1/4): 215-223.
[39]Han Yongming, Cao Junji. Black carbon in the environment and its global biogeochemical cycle[J]. Marine Geology & Quaternary Geology, 2005, 25(1): 125-132. [韩永明,曹军骥. 环境中的黑碳及其全球生物地球化学循环[J]. 海洋地质与第四纪地质,2005,25(1): 125-132.]
[40]Rowe N P, Jones T P. Devonian charcoal[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 331-338.
[41]Verardo D J, Ruddiman W F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance[J]. Geology, 1996, 24(9): 855-857.
[42]Bird M I, Cali J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394: 767-769.
[43]Bird M I, Cali J A. A revised high-resolution oxygen-isotope chronology for ODP-668B: Implications for Quaternary biomass burning in Africa[J]. Global and Planetary Change, 2002, 33(1/2): 73-76.
[44]Shen Wenjie, Lin Yangting, Sun Yongge, et al. Black carbon record across the Permian Triassic boundary section at Meishan, Changxing county, Zhejiang province and its significance[J].Acta Petrologica Sinica,2008, 24(10): 2 407-2 414.[沈文杰,林杨挺,孙永革,等. 浙江省长兴县煤山剖面二叠—三叠系过渡地层中的黑碳记录及其地质意义[J]. 岩石学报,2008,24(10):2 407-2 414.]
[45]Schmidt M W I, Skjemstad J O, Czimczik C I, et al. Comparative analysis of black carbon in soils[J]. Global Biogeochemical Cycles, 2001, 15(1): 163-168.
[46]Currie L A, Benner B A, Kessler J D, et al. A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a[J]. Journal of Research of the National Institute of Standards and Technology, 2002, 107(3): 279-298.
[47]Swetnam T W. Fire history and climate change in giant sequoia groves[J]. Science, 1993, 262: 885-889.
[48]Baisan C H, Swetnam T W. Fire history on a desert mountain range: Rincon Mountain wilderness, Arizona, USA[J]. Canadian Journal of Forest Research, 1990, 20(10): 1 559-1 569.
[49]Sheppard P R, Means J E, Lassoie J P. Notes: Cross-dating cores as a nondestructive method for dating living, scarred trees[J]. Forest Science, 1988,34(3):781-789.
[50]Heyerdahl E K, Brubaker L B, Agee J K. Spatial controls of historical fire regimes: A multiscale example from the interior west, USA[J]. Ecology,2001, 82(3): 660-678.
[51]Kilgore B M, Taylor D. Fire history of a sequoia-mixed conifer forest[J]. Ecology, 1979, 60(1): 129-142.
[52]Xu Huacheng, Li Zhandong, Qiu Yang. Fire disturbance history in virgin forest in northern region of Daxing′an Mountains[J]. Acta Ecologica Sinica, 1997, 17(4): 337-343. [徐化成,李湛东,邱扬. 大兴安岭北部地区原始林火干扰历史的研究[J]. 生态学报,1997,17(4):337-343.]
[53]Liu Guangju, Hu Haiqing, Zhang Hailin, et al. Impact of fire frequency and fire intensity on stability of community structure[J]. Journal of Northeast Forestry University, 2008, 36(7): 32-33. [刘广菊,胡海清,张海林,等. 火频度和火强度对植物群落结构稳定性的影响[J]. 东北林业大学学报,2008,36(7):32-33.]
[54]Hu Haiqing. Study on fire scar of trees in virgin forest region of Daxing′an Mountains[J]. Journal of Natural Disasters,2003, 12(4): 68-72.[胡海清. 大兴安岭原始林区林木火疤的研究[J]. 自然灾害学报,2003,12(4):68-72.]
[55]Van Horne M L, Fulé P Z. Comparing methods of reconstructing fire history using fire scars in a southwestern United States ponderosa pine forest[J]. Canadian Journal of Forest Research,2006, 36(4): 855-867.
[56]Wallenius T H, Pitknen A, Kuuluvainen T, et al. Fire history and forest age distribution of an unmanaged Picea abies dominated landscape[J]. Canadian Journal of Forest Research, 2005, 35(7): 1 540-1 552.
[57]Whitlock C, Skinner C N, Bartlein P J, et al. Comparison of charcoal and tree-ring records of recent fires in the eastern Klamath Mountains, California, USA[J]. Canadian Journal of Forest Research, 2004, 34(10): 2 110- 2 121.
[58]Mooney S, Maltby E. Two proxy records revealing the late Holocene fire history at a site on the central coast of New South Wales, Australia[J]. Austral Ecology, 2006, 31(6): 682-695.
[59]Bergeron Y, Gauthier S, Flannigan M, et al. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec[J]. Ecology, 2004, 85(7): 1 916-1 932.
[60]Lageard J G A, Thomas P A, Chambers F M. Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 87-99.
[61]MacDonald G M, Larsen C P S, Szeicz J M, et al. The reconstruction of boreal forest fire history from lake sediments: A comparison of charcoal, pollen, sedimentological and geochemical indices[J]. Quaternary Science Reviews, 1991, 10(1): 53-71.
[62]Long C J, Whitlock C, Bartlein P J, et al. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study[J]. Canadian Journal of Forest Research, 1998, 28(5): 774-787.
[63]Marlon J R, Bartlein P J, Carcaillet C, et al. Climate and human influences on global biomass burning over the past two millennia[J]. Nature Geoscience, 2008, 1(10): 697-702.
[64]Carcaillet C, Almquist H, Asnong H, et al. Holocene biomass burning and global dynamics of the carbon cycle[J]. Chemosphere, 2002, 49(8): 845-863.
[65]Herring J R. Charcoal fluxes into sediments of the North Pacific Ocean: The Cenozoic record of burning[C]Sundguist E T, Broecher W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: AGU, 1985: 419-442.
[66]Sun Xiangjun, Li Xun, Chen Huaicheng. Evidence for natural fire and climate history since 37 ka BP in the northern part of the South China Sea[J]. Science in China (Series D),2000, 43(5): 487-493.[孙湘君,李逊,陈怀成. 南海北部最近37ka以来天然火与气候[J]. 中国科学:D辑,2000,30(2):487-493.]
[67]Luo Yunli, Chen Huaicheng, Wu Guoxuan, et al. Evidence for natural fire and climate history since the last three glacial in the northern part of the South China Sea—Charcoal record from marine sediment of ODP1144 core[J]. Science in China (Series D), 2001, 31(10): 854-860. [罗运利,陈怀成,吴国煊,等. 南海最近3个冰期旋回中的天然火与气候——ODP1114孔深海沉积中的炭屑记录[J]. 中国科学:D辑,2001,31(10):854-860.]
[68]Wang X, van der Kaars S, Kershaw P, et al. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 147(3/4): 241-256.
[69]Huang C C, Pang J L, Chen S, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1/2): 28-44.
[70]Haberle S G, Ledru M P. Correlations among charcoal records of fires from the past 16,000 years in Indonesia, Papua New Guinea, and Central and South America[J]. Quaternary Research, 2001, 55(1): 97-104.
[71]Tan Zhihai, Huang Chunchang, Pang Jiangli, et al. Charcoal records of Holocene loess-soil sequences and its palaeoenvironmental significance in Weihe River drainage[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 25-30.[谭志海,黄春长,庞奖励,等. 渭河流域全新世土壤剖面木炭屑记录及其古环境意义[J]. 中国生态农业学报,2010,18(1):25-30.]
[72]Clark J S, Patterson III WA. Background and local charcoal in sediments: Scales of fire evidence in the paleorecord[C]Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin:Springer-Verlag, 1997: 23-48. 
[73]Garstang M, Tyson P D. Atmospheric transports of participate and gaseous products by fires[C]Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin: Springer-Verlag, 1997: 207-250.
[74]Radke L, Hegg D, Hobbs P, et al. Particulate and trace gas emissions from large biomass fires in North America[C]Levine J S ed. Global biomass burning: Atmospheric, Climatic, and Biospheric Implications. Cambridge: MA, MIT Press, 1991: 209-224.
[75]Andreae M. Biomass burning-Its history, use, and distribution and its impact on environmental quality and global climate[C]Levine J S ed. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. Cambridge: MA, MIT Press,1991: 3-21.
[76]Ohlson M, Tryterud E. Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal[J].The Holocene, 2000, 10(4): 519-525.
[77]Clark J S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling[J]. Quaternary Research, 1988, 30(1): 67-80.
[78]Gardner J J, Whitlock C. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies[J]. The Holocene, 2001, 11(5): 541-549.
[79]Whitlock C, Larsen C. Charcoal as a fire proxy[J].Developments in Paleoenvironmental Research, 2002, 3: 75-97.
[80]Whitlock C, Millspaugh S H. Testing the assumptions of fire-history studies: An examination of modern charcoal accumulation in Yellowstone National Park, USA[J]. Holocene, 1996, 6(1): 7-15.
[81]Liu X M, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess: Evidence for pedogenesis[J]. Quaternary International, 1999, 62(1): 93-102.
[82]Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols[J]. Quaternary Research,1995, 44(3): 383-391.
[83]Simmons S L, Sievert S M, Frankel R B, et al. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond[J]. Applied and Environmental Microbiology, 2004, 70(10): 6 230-6 239.
[84]Gedye S J, Jones R T, Tinner W, et al. The use of mineral magnetism in the reconstruction of fire history: A case study from Lago di Origlio, Swiss Alps[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 101-110.
[85]Millspaugh S H, Whitlock C. A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA[J]. The Holocene, 1995, 5(3): 283-292.
[86]Rummery T A. The use of magnetic measurements in interpreting the fire histories of lake drainage basins[J]. Hydrobiologia, 1983, 103(1): 53-58.
[87]Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment[J]. Environmental Science & Technology, 1992, 26(7): 1 278-1 284.
[88]Meharg A A, Wright J, Dyke H, et al. Polycyclic Aromatic Hydrocarbon (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire[J]. Environmental Pollution, 1998, 99(1): 29-36.
[89]Vergnoux A, Malleret L, Asia L, et al. Impact of forest fires on PAH level and distribution in soils[J]. Environmental Research, 2010, doi:10.1016/j.envres.2010.01.008.
[90]Kim E J, Oh J E, Chang Y S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil[J]. The Science of the Total Environment, 2003, 311(1/3): 177-189.
[91]Zhao Hongmei, Wang Jian, Yu Xiaofei, et al. Distribution of polycyclic aromatic hydrocarbons in marsh soils from the Sanjiang Plain and fire effect on it[J]. Wetland Science, 2010, 8(1): 43-47.[赵红梅,王健,于晓菲,等. 三江平原沼泽土中多环芳烃分布及火烧的影响[J]. 湿地科学,2010,8(1):43-47.]
[92]Thiele S, Brümmer G W. Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions[J]. Soil Biology and Biochemistry, 2002, 34(5): 733-735.
[93]Zhang Ting, Liu Xiande, Dong Shuping, et al. Determination and application of organic molecular marker for biomass burning particles[J]. Rock and Mineral Analysis, 2006, 25(2): 107-113.[张烃,刘咸德,董树屏,等. 生物质燃烧颗粒物有机示踪化合物的测定和应用[J]. 岩矿测试,2006,25(2):107-113.]
[94]Simoneit B R T, Schauer J J, Nolte C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J].Atmospheric Environment, 1999, 33(2): 173-182.
[95]Simoneit B R T. A review of biomarker compounds as source indicators and tracers for air pollution[J]. Environmental Science and Pollution Research,1999, 6(3): 159-169.
[96]Simoneit B R T, Elias V O. Organic tracers from biomass burning in atmospheric particulate matter over the ocean[J]. Marine Chemistry, 2000, 69(3/4): 301-312.
[97]Simoneit  B R T, Rogge W F, Lang Q, et al. Molecular characterization of smoke from campfire burning of pine wood (Pinus elliottii) [J]. Chemosphere-Global Change Science, 2000, 2(1): 107-122.
[98]Fraser M P, Lakshmanan K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols[J]. Environmental Science & Technology, 2000, 34(21): 4 560-4 564.
[99]Otto A, Gondokusumo R, Simpson M J. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada[J]. Applied Geochemistry, 2006, 21(1): 166-183.
[100]Mochida M, Kawamura K. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles[J]. Journal of Geophysical Research, 2004, 109(D21): D21202, doi:21210.21029/22004JD004962.
[101]Simoneit B R T. Biomass burning—A review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry, 2002, 17(3): 129-162.
[102]Simoneit B R T, Elias V O. Detecting organic tracers from biomass burning in the atmosphere [J]. Marine Pollution Bulletin, 2001, 42(10): 805-810.[103]Puxbaum H, Caseiro A, Sánchez-Ochoa A, et al. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background[J]. Journal of Geophysical Research, 2007, 112: D23S05, doi:10.1029/2006JD008114.
[104]Gambaro A, Zangrando R, Gabrielli P, et al. Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry[J]. Analytical Chemistry,2008, 80(5): 1 649-1 655.
[105]Gao S, Hegg D A, Hobbs P V, et al. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Ldentification, evolution, and distribution[J]. Journal of Geophysical Research, 2003, 108(D13): 8 491, doi: 8410.1029/2002JD002324.
[106]Yasui T, Kitamura Y, Nakahara K, et al. Metabolism of Levoglucosan (1, 6-anhydro-β-D-glucopyranose) in Bacteria[J]. Agricultural and Biological Chemistry, 1991, 55(7): 1 927-1 929.
[107]Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1/2): 9-19.
[108]Daniau A L, Sánchez-Goñi M F, Beaufort L, et al. Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia[J].Quaternary Science Reviews, 2007, 26(9/10): 1 369-1 383.
[109]Daniau A L, Goñi  M F S, Duprat J. Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay[J]. Quaternary Research, 2009, 71(3): 385-396.
[110]Daniau A L, Harrison S P, Bartlein P J. Fire regimes during the Last Glacial[J].Quaternary Science Reviews,2010, 29(21/22): 2 918-2 930.
[111]Chu Guoqiang, Gu Zhaoyan, Xu Bing, et al. Varve chronology and radiometric dating (137Cs, 210Pb) from the Sihailongwan Maar Lake, northeastern China[J].Quaternary Sciences,2005, 25(2): 202-207.[储国强,顾兆炎,许冰,等. 东北四海龙湾玛珥湖沉积物纹层计年与137Cs,210Pb测年[J]. 第四纪研究,2005,25 (2):202-207.]

No Suggested Reading articles found!