研究论文

夏季青藏高原加热和环流场的日变化

  • 刘新 ,
  • 李伟平 ,
  • 吴国雄
展开
  • 1.中国科学院青藏高原研究所,北京 100085;2.中国科学院大气物理研究所,LASG,北京 100029;3.中国气象局国家气候中心,北京 100082
刘新(1955-),男,博士,副研究员,主要从事大气动力学及大气边界层研究.E-mail:lx@itpcas.ac.cn

收稿日期: 2006-10-11

  修回日期: 2006-11-02

  网络出版日期: 2006-12-15

基金资助

中国科学院知识创新工程重要方向项目“嘉马拉雅山北坡地区地面大气与对流层大气变化研究”(编号:KZCX3-SW-231);国家重点基础研究发展计划项目“青藏高原环境变化及其对全球变化的响应与适应对策”(编号:2005CB422000);国家自然科学基金项目“青藏高原及亚洲南部海陆分布对亚洲季风爆发进程的影响”(编号:40475027)资助.

The Diurnal Variation of the Atmospheric Circulation and Diabatic Heating over the Tibetan Plateau

  • LIU Xin ,
  • LI Wei-ping ,
  • WU Guo-xiong
Expand
  • 1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085,China;2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid-Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;3.National Climate Center, Beijing 100081,China

Received date: 2006-10-11

  Revised date: 2006-11-02

  Online published: 2006-12-15

摘要

通过使用NCEP/NCAR再分析资料,分析了夏季青藏高原地区非绝热加热场的日变化特征以及高原上空环流场的日变化特点。分析发现青藏高原及其邻近地区上空环流的日变化在欧亚地区大气环流系统中表现最为显著。环流日变化是被非绝热加热的日变化所驱动的,特别是被太阳辐射日变化所驱动。由于高原上空大气柱质量远小于低海拔的平原地区,故太阳辐射日变化引起的加热日变化可在高原地区产生更为显著的环流日变化。通过位涡方程的诊断证实,白天高原加热增强,可在大气上层制造大量负位涡并向周边地区辐散,使高原地区大气高层成为负涡源。而低层则是加热制造正位涡,并使周边地区向高原的辐合增强,摩擦耗散是低层抑制正位涡增长的主要因素。而夜间加热减弱使高原对局地环流的影响作用大为减弱。故而高原及其周边地区的局地环流也具有明显的日变化特征。

本文引用格式

刘新 , 李伟平 , 吴国雄 . 夏季青藏高原加热和环流场的日变化[J]. 地球科学进展, 2006 , 21(12) : 1273 -1282 . DOI: 10.11867/j.issn.1001-8166.2006.12.1273

Abstract

The NCEP/NCAR reanalysis data are employed to analyze the diurnal variation of the diabatic heating and atmospheric circulation over the Tibetan Plateau and it's surrounding areas. The atmosphere over the TP is most sensitive to the diurnal change of heating, and it results in the vivid diurnal change feature over the TP and its surrounding areas. Its diurnal change is consistent with that of the heating field's, especially with diurnal change of the solar heating. Because the mass of the atmospheric column over the TP is much lighter than other regions, the diurnal change of solar radiation heating causes more significant circulation variation over the TP. The equation of the potential vorticity is employed to diagnose the dynamics of diurnal circulation variation in the paper. The result shows while the solar radiation gradually enhanced in the daytime, the positive vorticity of lower level atmosphere and negative vorticity of high level atmosphere over the TP is increase. All these lead to the most significant circulation and weather diurnal changes over the TP and its surrounding areas. The features of the diurnal change of the atmospheric circulation are in accordance with both theory and data analysis results in their phase and circulation patterns.

参考文献

[1] Ye Duzheng, Gao Youxi. Meteorology of the Qinghai-Xizang Plateau[M]. Beijing: Science Press, 1979.[叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979.]

[2] Flohn H. Contributions to a meteorology of the Tibetan Highlands[M]. Atmospheric Science Paper, No.130, Corolado State University, Ft. Collins, 1968.

[3] Shen Zhibao. The temperature over Tibetan plateau and its surrounding areas[C]Ye Duzheng, ed. Meteorology of the Qinghai-Xizang Plateau. Beijing:Science Press, 1979:10-12.[沈志宝.青藏高原及其邻近地区的温度场[C]//叶笃正等编.青藏高原气象学.北京:科学出版社,1979:10-22.]

[4] Tang Maocang. Air pressure and wind[C]Ye Duzheng ed. Meteorology of the Qinghai-Xizang Plateau. Beijing: Science Press, 1979:23-38.[汤懋苍.气压和风[C]叶笃正等编.青藏高原气象学.北京:科学出版社,1979:23-38.]

[5] Shen Zhibao. The humidity over Tibetan Plateau and its surrounding areas[C]Ye Duzheng, ed. Meteorology of the Qinghai-Xizang Plateau. Beijing:Science Press,1979:39-48.[沈志宝.青藏高原及其附近地区的湿度场[C]叶笃正等编.青藏高原气象学.北京:科学出版社,1979:39-48.]

[6] Yin Daosheng. The local diabatic frontogenesis in the central of the Tibetan Plateau[J]. Acta Meteorological Sinica, 1979,37:16-25.[尹道声.论青藏高原中部的非绝热局地锋生[J].气象学报,1979,37:16-25.]

[7] Ma Henian, Liu Zichen, Qin Ying, et al. Study on the transformation process of the thermal low in Qinghai province[C]The collected papers of the meteorological sciences examination over the Qinghai-Xizang Plateau. Beijing:Science Press,1984:262-272.[马鹤年,刘子臣,秦莹,.青海热低压变性过程的研究[C]青藏高原气象科学实验文集.北京:科学出版社,1984:262-272.]

[8] Yang Weiyu. The diagnosis of the heating and circulation over Tibetan Plateau in summer[D]. Beijing:The Institute of Atmospheric Physics, Chinese Academy of Sciences, 1988:163-207.[杨伟愚,夏季青藏高原热力场和环流场的诊断分析[D].北京:中国科学院大气物理研究所,1988:163-207.]

[9] Kuo H L, Qian Y F. Influence of the Tibetan plateau on cumulative and diurnal changes of weather and climate in summer[J]. Monthly Weather Review, 1981, 109:2 337-2 356.

[10] Shuyi S Chen, Houze R A. Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool[J]. Quarterly Jounal of Royal Meteorological Society,1997,123:357-388.

[11] Wu Guoxiong, Liu Yimin. Thermal adaptation, overshooting, dispersion and subtropical anticyclone, I: Thermal adaptation and overshooting[J]. Chinese Journal of Atmospheric,2000,24(4):433-446.[吴国雄,刘屹岷.热力适应、过流、频散和副高 I:热力适应和过流[J].大气科学,2000,24(4):433-446.]

[12] Wu Guoxiong, Liu Yimin, Mao Jiangyu, et al. Adaptation of the Atmospheric Circulation to Thermal Forcing over the Tibetan Plateau[M]. Observation, Theory and Modeling of Atmospheric Variability. Singapore: World Scientific Publishing Company, 2004:92-114.

文章导航

/