收稿日期: 2005-12-20
修回日期: 2006-01-11
网络出版日期: 2006-02-15
基金资助
国家自然科学基金项目“基于遥感和过程模型反演中国土壤呼吸的关键参数”(编号:40401028);国家自然科学基金杰出青年基金项目“陆地表层人地系统相互作用机制的地理样带研究”(编号:40425008)资助.
Indirect Impacts of Land Use Change on Soil Organic Carbon Change in China
Received date: 2005-12-20
Revised date: 2006-01-11
Online published: 2006-02-15
中国土壤有机碳储量及其在全球变暖背景下的变化趋势是影响全球碳循环的一个重要因素。土地利用变化对土壤有机碳储量既有直接影响,也有间接影响。一方面,土地利用变化直接改变了生态系统的类型,从而改变了生态系统的净初级生产力(NPP)及相应的土壤有机碳的输入。另一方面,土地利用变化潜在地改变了土壤的理化属性,从而改变了土壤呼吸对温度变化的敏感性系数(常用Q10表示)。在全球变暖背景下,Q10值的改变显著影响着土壤有机碳释放的强度。利用生态系统碳循环过程模型(CASA模型)反演了不同土地利用类型下的Q10值,并评价了土地利用类型的改变对土壤有机碳储量变化的间接影响。研究结果表明,林地与草地转换成耕地后将增大土壤呼吸的Q10值,此外,人类通过灌溉、氮肥的施用也能增大土壤呼吸的Q10值,从而使得全球变暖背景下土壤呼吸的碳通量有所增强。
, 周涛 , 史培军 . 土地利用变化对中国土壤碳储量变化的间接影响[J]. 地球科学进展, 2006 , 21(2) : 138 -143 . DOI: 10.11867/j.issn.1001-8166.2006.02.0138
Soil organic carbon (SOC) storage and its change trend in China is important to the global carbon cycles under the background of global warming. Land use change has both direct and indirect influences on SOC storage. On the one hand, the land use change directly modifies the original ecosystem type and then makes the net primary productivity and soil carbon input change, which directly impacts SOC storage. On the other hand, land use change modifies some physical or chemical properties of soil and thus potentially impacts the value of temperature sensitivity of soil heterogeneous respiration (Q10). Under the situation of global warming, the changed Q10 will modify the feedback intensity of soil respiration and then indirectly impacts the soil organic carbon storage. In this study, a regional process-based carbon cycle model (CASA model) was used to estimate the Q10 values for the different land use types. Basing on the differences of Q10 among land use types, the indirect impacts of land use change on soil organic carbon storage was assessed. The results showed that the land use changes from grassland or forest to cropland will increase the value of Q10. Furthermore, the human activities, such as utilizing of irrigation and nitrogenous fertilizer will also increase the values of Q10. So, the land use change and human activities will potentially increase soil carbon releasing under the situation of global warming and then will indirectly impact soil organic carbon storage.
Key words: Soil respiration; Temperature sensitivity; Q10; CASA model; China.
[1] Houghton J T, et al, eds. In Climate Change 2001: The Science of Climate Change[M]. New York: Cambridge University Press, 2001.
[2] IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto protocol[J]. Science, 1998, 280:1 393-1 394.
[3] Piao S, Fang J, Zhou L, et al. Changes in vegetation net primary productivity from 1982 to 1999 in China[J]. Global Biogeochemical Cycles, 2005, 19:GB2027, doi:10.1029/2004GB002274.
[4] Zhou Tao, Shi Peijun, Wang Shaoqiang. Impacts of climate change and human activities on soil carbon storage in China[J]. Acta Geographica Sinica, 2003, 58(5): 727-734.[周涛,史培军,王绍强. 气候变化及人类活动对中国土壤有机碳储量的影响[J]. 地理学报,2003, 58(5): 727-734.]
[5] Zhou Tao, Shi Peijun, Sun Rui, et al. The impacts of climate change on net ecosystem production in China[J]. Acta Geographica Sinica, 2004, 59(3): 357-365.[周涛,史培军,孙睿,等. 气候变化对净生态系统生产力的影响[J].地理学报, 2004, 59(3): 357-365.]
[6] Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature,2001, 413:622-625.
[7] Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 2003, 17(4): 1104, doi:10.1029/2003GB002035.
[8] Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry, 2000, 48:21-51.
[9] Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls[J]. Biogeochemistry,2000, 48: 71-90.
[10] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Function of Ecology, 1994, 8:315-323.
[11] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soilogical Biolistry Biochemistry,1995, 27:753-760.
[12] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confound factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology,1998, 4(2):217-227.
[13] Liu X, Wan S, Su B, et al. Responses of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil,2002, 240:213-223.
[14] Reichstein M, Tenhunen J D, Ourcival J M, et al. Ecosystem respiration in two Mediterranean evergreen Holm oak forests: Drought effects and decomposition dynamics[J]. Function of Ecology, 2002, 16:27-39.
[15] Hui D, Luo Y. Evaluation of soil CO2 production and transport in duke forest using a process-based modeling approach[J]. Global Biogeochemical Cycles, 2004,18:GB4029,doi:10.1029/ 2004GB002297.
[16] Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test[J]. Ecology,1989, 70:97-104.
[17] Liski J, Ilvesniemi H, Mäkelä A, et al. CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of old soil organic matter is tolerant of temperature[J]. AMBIO,1999, 28:171-174.
[18] Wan S Q, Luo Y Q. Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment[J]. Global Biogeochemical Cycles,2003, 17(2):Art. No. 1054.
[19] Fang Jingyun, Liu Shaohui, Zhao Kun. Factors affecting soil respiration in reference with temperature's role in the global scale[J]. Chinese Geographical Science,1998, 8(3): 246-255.
[20] Thompson M V, Randerson J T, Malmstrom C M, et al. Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?[J]. Global Biogeochemical Cycles,1996, 10(4):711-726.
[21] Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles,1994, 8(3): 279-293.
[22] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993, 7(4):811-841.
[23] Field C B, Randerson J T, Malmstrom C M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment,1995, 51: 74-88.
[24] GSDP: the global soil data products[EB/OL]. Oak Ridge, Tenn: International Geosphere-Biosphere Programme-Data and Information Services,2000[2004-03-16].http∥www.daac.ornl.gov.
[25] Qi Y, Xu M, Wu J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: Nonlinearity begets surprises[J]. Ecological Modelling,2002, 153: 131-142.
[26] Yuste J C, Janssens I A, Carrara A, et al. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest[J]. Tree Physiology,2003, 23:1 263-1 270.
[27] Dörr H, Münnich K O. Annual variation in soil respiration in selected areas of the temperate zone[J]. Tellus,1987, 9B:114-121.
/
〈 |
|
〉 |