收稿日期: 2005-10-26
修回日期: 2006-07-24
网络出版日期: 2006-08-15
Dolomite Problem and Precambrian Enigma
Received date: 2005-10-26
Revised date: 2006-07-24
Online published: 2006-08-15
白云岩的成因是沉积学界倍受关注的研究主题;众多的白云岩化模式可以用来解释各种成岩白云岩的成因;然而原生白云岩的成因一直是困扰沉积学界的难题,被称为“白云岩问题”。究其原因主要在于:在近地表环境的常温、常压实验条件下不能生成完美有序的白云石矿物。近年来,野外观测和实验模拟研究发现某些微生物的生命活动可导致白云石于地表常温、常压条件下发生沉淀。如硫酸盐还原细菌和产烷菌的调节作用可以克服白云石晶核形成的动力学障碍,在这些厌氧菌的参与下,白云石晶核形成和沉淀并不需要高镁离子和过饱和状态的溶液环境。这种微生物学和沉积学的结合代表了一个新的研究方向,同时也为解决“白云岩问题”带来了新希望。泥晶白云岩化作用(mimetic dolomization)可以保留原矿物(文石或方解石)的晶形、原岩的微细组构,对解释地史时期保存原生构造的白云岩具重要的启示。“前寒武纪之谜”是指前寒武纪叠层石中缺乏钙化蓝细菌化石的现象。参与碳酸盐岩叠层石建造的微生物群组成可能随着地质历史的演化发生变化,蓝细菌在显生宙的叠层石建造过程中起主导作用,细胞体积更小的真细菌很可能是参与前寒武纪叠层石建造的主要微生物。
王勇 . “白云岩问题”与“前寒武纪之谜”研究进展[J]. 地球科学进展, 2006 , 21(8) : 857 -862 . DOI: 10.11867/j.issn.1001-8166.2006.08.0857
The origin of dolomites is a research topic attracting great attention in sedimentology. Many dolomitization models have been invoked to interpret the origination of virious diagenetic dolomites. However, the genesis of early-formed dolomites has long been an enigma in sedimentology, often referred to as the "Dolomite Problem". This problem arises from the fact that scientists have not yet been successful in the laboratory in precipitating perfectly ordered dolomite at the normal temperatures and pressure that occur at Earth's surface. The recent field and laboratory experiments show that some microbes play important roles in precipitation of dolomite under conditions of Earth's surface. For example, the direct mediation of sulfate-reducers and methanogens can overcome the kinetic barrier to dolomite nucleation, and that they may play an active role in the formation of this mineral in natural environments. In these anaerobes involved system, neither extremely Mg-rich fluids nor highly supersaturated conditions are required for the nucleation and precipitation of dolomite. This integrating microbiology into the carbonate sedimentology opens a new research direction and also throws a new light on the “Dolomite Problem”. Mimetic dolomization, where the precursor fabrics are excellently preserved, has important implications on interpreting the genesis of dolostone with original fabrics preserved. The “Precambrian enigma” refers to the scarcity of calcified cyanobacteria in Precambrian stromatolites. There have been subsequent changes in the composition stromatolite biota through Earth's history. Smaller eubacteria may have greater involvement than cyanobacteria in stromatolite formation in the Precambrian, and cyanobacteria may enter stromatolite building biota until the latest Neoproterozoic.
Key words: Carbonate rocks; Dolomite problem; Precambrian enigma.
[1] Sam Bogg Jr. Principles of Sedimentology and Stratigraphy [M]. Upper Saddle River: Prentice Hall, 2001:1-726.
[2] Mei Mingxiang, Ma Yongsheng, Zhou Pikang, et al. Sedimentology of Carbonate Rocks [M]. Beijing: Earthquake Press, 1997:1-306. [梅冥相、马永生、周丕康,等. 碳酸盐岩沉积学导论[M].北京:地震出版社, 1997:1-306.]
[3] Schidlowski M. Early life and mineral resources [J]. Nature and Resources, 1985, 21: 1-7.
[4] Fan D, Hein J R, Jye J. Ordovician reef-hosted Jiaodingshan Mn-Co deposit and Dawashan Mn deposit, Sichuan Province, China [J]. Ore Geology Review, 1999, 15: 135-151.
[5] Leidner G. Gewinnung und Verarbeitung von Kalkstein und Kalk in Niedersachsen [J]. Ver ffentl Nieders chs Akad Geowiss,1994, 9: 10-18.
[6] Feng Zengzhao, et al. Lithofacies Paleogeography of Early Paleozoic of North China Platform [M]. Beijing: Geology Press, 1990:1-269. [冯增昭等. 华北地台早古生带岩相古地理 [M]. 北京: 地质出版社, 1990:1-269.]
[7] Given R K, Wilkinson B H. Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation [J]. Journal of Sedimentary Petrology,1976, 57: 1 068-10 787.
[8] Feng Z Z, Jin Z K. Types and origin of dolostones in the lower Palaeozoic of the North China platform[J]. Sedimentary Geology, 1994, 93: 279-290.
[9] Feng Z Z, Zhang Y S, Jin Z K. Type, origin and reservoir characteristics of dolostones of the Ordovician Majiagou group, Ordos, North China platform [J]. Sedimentary Geology, 1998, 118: 127-140.
[10] Zenger D H, Bourrouilh-Le Jan F G, Carozzi. Dolomieu and the first description of dolomite[C]∥Purser B M, Zenger D H, eds. Dolomites: A volume in honor of Doloieu: International Association of Sedimentologists, Special Publication. Oxford: Blackwell, 1994:21-28.
[11] Usdowski E. Synthesis of dolomite and geochemical implications[C]∥Purser B M, Zenger D H, eds. Dolomites: A Volume in Honor of Doloieu: International Association of Sedimentologists, Special Publication. Oxford: Blackwell, 1994: 345-360.
[12] Lumsden D N, Lloyd R V. Three dolomites[J]. Journal of Sedimentary Research,1997, 67: 381-396.
[13] Gains A M. Dolomitization kinetics: Recent experimental studies[C]∥Zenger D H, Dunham J B, Rthington R L, eds. Concept and Models of Dolomitization: Society Economie Paleontologists and Mineralogists, Special Publication 28 , 1980:81-86.
[14] Land L S. Failure to precipitate dolomite at 25 degrees C from dilute solution despite 1000-fold oversaturation after 32 years [J]. Aquatic Geochemistry, 1998, 4: 361-368.
[15] Warthmann R, van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology,2000,28:1 091-1 094.
[16] van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation [J]. Sedimentology, 2003, 50: 237-245.
[17] Moreira N F, Walter L M, Vasconcelos C, et al. Role of sulfide oxidation in dolomization: Sediment and porewater geochemistry of a modern hypersaline lagoon system [J]. Geology, 2004, 32: 701-704.
[18] Burne S J, Mckenzie J A, Vasconcelos. Dolomite formation and biogeochemistrical cycles in the Phanerozoic [J]. Sedimentary Geology, 2000, 47 (suppl.): 49-61.
[19] Holland H D, Zimmermann H. The dolomite problem revisited [J]. International Geology Review, 2000, 42: 481-490.
[20] Hardie L A. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas [J]. Geology, 2003, 31: 785-788.
[21] Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines [J]. Geology, 2003, 31: 857-860.
[22] Flugel E. Microfacies of Carbonate Rocks [M]. Berlin: Springer, 2004:1-975.
[23] Mckenzie J A, Vasconcelos C. How comparative carbonate sedimentology helped to solve the "dolomite problem"[J]. Geological Society of America Abstracts with Programs, 2005, 37: 182.
[24] Bernaconi S M. Geochemical and Microbial Controls on Dolomite Formation in Anoxic Environment: A Case Study from the Middle Triassic (Ticino, Switzerland) [M]. Contributions to Sedimentology, Stuttgart: Schweizerbart'sche Verlagsbuchhandlund,1994, 19: 1-109.
[25] Gournay J, Folk R L, Kirkland B L. Evidence for nannobacterially precipitated dolomite in Pennsylvanian carbonates[C]∥.Camoin G, Arnaud-Vanneau A. convenors, International Workshop on Microbial Mediation in Carbonate Diagenesis.1997, 97: 33 (Abstract Book, International Association of Sedimentologists).
[26] Vasconcelos C, Mckenzie J A, Bernaconi S, et al. Microbial mediation as a possible mechanism for nature dolomite formation at low temperature [J]. Nature, 1995, 377: 220-222.
[27] Vasconcelos C, Mckenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions, Lagoa Vermelha, Rio de Janeiro, Bruzil [J]. Journal of Sedimentary Research, 1997, 67: 378-390.
[28] Roberts J A, Bennett P C, Gonz lez L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology,2004, 32: 277-280.
[29] Sibley D F. Secular changes in the amount and texture of dolomite[J]. Geology,1991, 19: 151-154.
[30] Corsetti F A, Kidder D L, Marenco P J. Trends in oolite dolomization across the Neoproterozoic-Cambrian boundary: A case study from Death Valley, California [J]. Sedimentary Geology, 2006, in press.
[31] Brennan S T, Lowenstein T K, Juske H. seawater chemistry and the advent of biocalcification [J]. Geology, 2004, 32: 473-476.
[32] Marenco P J, Corsetti F A, Bottjer D J, et al. Sulfur isotope anomalies across the Permo-Triassic boundary and through the Early Triassic[M]. International Symposium on Triassic Chronostratigraphy and Biotic Recovery, 23-25 May 2005, Chaohu, ChinaAlbertiana, 33: 57.
[33] Riding R. Calcified Cyanobacteria in Phanerozioc Reefs [M]. Algae in Reefs Symposium, Granada 1989, Abstract,1989:3-4.
[34] Riding R. Evolution of algal and cyanobacterial calcification[C]∥Bengtson S, ed. Early Life on Earth. New York: Columbia University Press, 1994:426-438.
[35] Riding R. Stromatolite decline: A brief reassessment [J]. Facies, 1997, 36: 227-230.
[36] Riding R. Temporal variation in calcification in marine cyanobacteria [J]. Journal of the Geological Society of London, 1992, 149: 979-989.
[37] Awramik S M, Riding R. Role of algal eukaryotes in subtidal columnar stromatolite formation [J]. Proceedings of the National Academy of Sciences, USA, 1988,85:1 327-1 329.
[38] Riding R, Awramik S M, Winsborough B M, et al. Bahamian giant stromatolites: Microbial composition of surface mats [J]. Geological Magazine, 1991, 128: 227-234.
[39] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms [J]. Sedimentology, 2000, 47 (suppl.1): 179-214.
/
〈 |
|
〉 |