综述与评述

造山动力学定量研究——理论与方法

  • 刘启元 ,
  • 童晓光 ,
  • 宋惠珍 ,
  • 刘洁
展开
  • 1.中国地震局地质研究所,北京 100029; 2.中石油国际合作司,北京 100724
刘洁(1967-),女,江西宜丰人,副研究员,主要从事计算构造力学研究. E-mail:lj_igscb@sohu.com

收稿日期: 2001-11-05

  修回日期: 2004-11-09

  网络出版日期: 2005-05-25

基金资助

国家自然科学基金重点项目“天山陆内造山动力学的宽频带流动地震台阵研究”(编号:40234043)资助.

A QUANTITATIVE STUDY OF THE OROGENIC DYNAMICS THEORY AND APPROACH

  • LIU Qi-yuan ,
  • TONG Xiao-guang ,
  • SONG Hui-zhen ,
  • LIU Jie
Expand
  • 1. Institute of Geology, China Earthquake Administration, Beijing 100029,China;
    2. International Cooperation Department, PetroChina, Beijing 100724,China

Received date: 2001-11-05

  Revised date: 2004-11-09

  Online published: 2005-05-25

摘要

造山动力学定量研究近10年来取得了重要进展,形成了较完整的理论技术体系,并获得了大量有说服力的实例分析结果,成为当前大陆变形研究的热点之一。造山动力学定量研究采用数值方法求解控制方程,获得造山带演化动态过程的图像,了解不同因素对该过程的影响作用,从力学解析的角度确定造山动力学模型的合理性。研究造山演化过程需要耦合固体力学、流体力学和热力学方程进行描述。造山演化过程中发生的强烈大位移、大应变(几何非线性)使得数值求解过程更复杂。对于强烈大应变可能需要采用重分网格技术。断裂的发生、运动与变形涉及岩石破裂准则与内部边界处理。同时,还必须综合分析地表剥蚀与沉积、重力均衡等作用。

本文引用格式

刘启元 , 童晓光 , 宋惠珍 , 刘洁 . 造山动力学定量研究——理论与方法[J]. 地球科学进展, 2005 , 20(5) : 533 -540 . DOI: 10.11867/j.issn.1001-8166.2005.05.0533

Abstract

In the last decade, great advances have been made on the numerical simulation of the orogenic dynamics. Not only an integrated theory has been built up, but also many convincing results were obtained from the concrete example analysis. The quantitative study of the orogenic dynamics has been a hot research point of the continental deformation. In the quantitative study of the orogenic dynamics a series of control equations need to be solved by means of the numerical technique. The results will provide the image of the orogenic dynamic evolution. This makes it possible to understand the role of different factors in the orogenic process and to identify the acceptability of an orogenic model from the mechanical analysis. The investigation of the orogenic evolution requires an equation system integrated from the solid-mechanics and fluid-mechanics as well as the thermodynamics. The intensive largedisplacement and large-strain taking place in the orogenic evolution make the numerical simulation more complicated. The re-meshing technique becomes necessary in this case. The criterion of rock failure and inner boundary condition need to be considered carefully while processing the fault growth, movement and deformation. In addition, the surface erosion and sediment as well as the isostatic compensation must be considered comprehensively in the orogenic simulation.

参考文献

[1] Carson M A, Kirkby M J. Hillslope Form and Process [M]. New York: Cambridge University Press, 1972. 
[2] Molnar P, Tapponnier P.Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975,189: 419-426.
[3] Coukroune P, ECORS Team. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt [J]. Tectonics, 1989, 8: 23-39.
[4] Deng Qidong,Feng Xianyue,Zhang Peizhen, et al. Active tectonics of the Chinese Tianshan mountain[M]. Beijing: Seismological Press, 2000.[邓起东,冯先岳,张培震,等.天山活动构造[M].北京:地震出版社,2000.]
[5] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264: 319-324.
[6] Bird P, Piper K. Plane-stress finite element models of tectonic flow in southern California[J]. Physics of the Earth and Planetary Interiors, 1980, 21: 158-175.
[7] Vilotte J P, Diagnieres M, Madariaga R. Numerical modeling of intraplate deformation: Simple mechanical models of continental collision[J]. Journal of Geophysical Research, 1982, 87: 10 709-10 728. 
[8] England P, McKenzie D. A thin viscous sheet model for continental deformation[J]. Geophysical Journal of the Royal Astronomical Society, 1982, 70: 295-321.
[9] Houseman G, England P. Finite strain calculation of continental deformation, 1. Method and general results for convergent zones[J]. Journal of Geophysical Research,1986, 91(B3): 3 651-3 663.
[10] England P, Houseman G. Finite strain calculation of continental deformation, 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research,1986, 91(B3): 3 664-3 676.
[11] Vilotte J P, Madariaga R, Daignieres M, Ziekiewicz O. Numerical study of continental collision: influence of buoyancy forces and initial stiff inclusion[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 84: 279-310.
[12] Gao Xianglin,Luo Huanyan,Neugebauer H J. Three dimensional numerical modeling for the dynamics of the continental collision[J]. Seismology and Geology, 1987, 9(2): 65-73.[高祥林,罗焕炎.大陆碰撞动力学的三维数值模拟[J].地震地质,1987, 9(2): 65-73.]
[13] Zhang Dongning, Xu Zhonghuai. Three dimensional elasto-visco numerical simulation of Qinghai-xizang Plateau’s recent tectonic stress field and it’s motion[J].Earthquake research in China,1994, 10(2): 136-143.[张东宁,许忠淮.青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟[J].中国地震,1994, 10(2): 136-143.]
[14] Chen Kaiping, Ma Jin. Numerical analysis of tectonic deformation by continental collision between India and Eurasia[J].Seismology and Geology, 1995, 17(3): 277-284.[陈开平,马瑾.印度与欧亚大陆碰撞构造变形数值分析[J].地震地质,1995, 17(3): 277-284.]
[15] Willett S, Beaumont C, Fullsack P. Mechanical model for the tectonics of doubly vergent compressional orogens[J]. Geology, 1993, 21: 371-374.
[16] Davis D J, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88: 1 153-1 172. 
[17] Dahlen F A, Suppe J, Davis D J. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory[J]. Journal of Geophysical Research, 1984, 89: 10 087-10 101. 
[18] Dahlen F A. Noncohesive critical Coulomb wedges: an exact solution[J]. Journal of Geophysical Research, 1984, 89: 10 125-10 133.
[19] Silver E A, Reed D L. Backthrusting in accretionary wedges[J]. Journal of Geophysical Research, 1988, 93: 3 116-3 126. 
[20] Beaument C, Fullsack P, Hamilton J. Erosional control of active compressional orogens. In: McClay K R, eds. Thrust tectonics[C]. London: Chapman and Hall, 1992.1-18.
[21] Willett S. Dynamic and kinematic growth and change of a Coulomb wedge. In: McClay K R, eds. Thrust tectonics[C]. London: Chapman and Hall, 1992.19-31. 
[22] Fullsack P. An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models[J]. Geophysical Journal International, 1995, 120: 1-23. 
[23] Beaumont C, Kamp P J J, Hamilton J, et al. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations[J]. Journal of Geophysical Research, 1996, 101(B2): 3 333-3 359.
[24] Waschbusch P, Beaumont C. Effect of a retreating subduction zone on deformation in simple regions of plate convergence[J]. Journal of Geophysical Research, 1996,101: 28 133-28 148. 
[25] Beaumont C, Ellis S, Pfiffner A. Dynamics of sediment subduction-accretion at convergent margins: Short tem modes, long-term deformation, and tectonic implications[J]. Journal of Geophysical Research, 1999, 104: 17 573-17 601. 
[26] Ellis S, Beaumont C, Pfiffner A. Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones[J]. Journal of Geophysical Research, 1999, 104: 15 169-15 190.
[27] Ellis S, Fullsack P, Beaumont C. Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens[J]. Geophysical Journal International, 1995, 120: 24-44. 
[28] Beaumont C, Fullsack P, Hamilton J. Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere[J]. Tectonophysics, 1994, 232: 119-132.
[29] Ellis S, Beaumont C, Jamieson R A, et al. Continental collision including a weak zone: the vise model and its application to the Newfoundland Appalachians[J]. Canadian Journal of Earth Science, 1998, 35: 1 323-1 346. 
[30] Willet S, Beaumont C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369: 642-645.
[31] Braun J, Beaumont C. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand[J]. Journal of Geophysical Research, 1995, 100(B9): 18 059-18 074. 
[32] Beaumont C, Munoz J A, Hamilton J, et al. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models[J]. Journal of Geophysical Research, 2000, 105(B4): 8 121-8 145.
[33] Beaumont C, Jamieson, RA, Medvedev S, et al. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan Orogen[J]. Journal of Geophysical Research, 2004, 109,B06406,1-29.
[34] Kooi H, Beaumont C. Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction[J]. Journal of Geophysical Research, 1994, 99(B6): 12 191-12 209. 
[35] Jamieson R A, Beaumont C, Fullsack P,et al. Barrovian regional metamorphism: Where's the heat? [A].In: Treloar P,O'Brien P, eds. What Controls Metamorphism and Metamorphic Reactions? [C].London: Geological Society Special Publication, 1998,138: 23-51. 
[36] Jamieson R A, Beaumont C, Medvedev S, et al. Crustal channel flows: 2. Numerical models with implications for metamorphicsm in the Himalayan-Tibetan Orogen[J]. Journal of Geophysical Research, 2004, 109,B06407,1-24. 
[37] Owen D R J. Hinton E. Finite Elements in Plasticity — Theory and Practice[M]. Pinerige Press Limited, 1980.
[38] Yin Youquan. General Introduction of Nonlinear Finite Element for Solid Mechanics[M]. Beijing: Peking University Press and Tsinghua University Press, 1987.[殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社和清华大学出版社,1987.]
[39] Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14: 227-253. 
[40] Christensen U R. An Eulerian technique for thermo-mechanical modeling of lithosphereic extension[J]. Journal of Geophysical Research, 1992, 97(B2): 2 015-2 036. 
[41] Batt G E, Braun J. On the thermo-mechanical evolution of compressional orogens[J]. Geophysical Journal International, 1997, 128: 364-382. 
[42] Braun J. Three-dimensional numerical modeling of compressional orogenies: Thrust geometry and oblique convergence[J]. Geology, 1993, 21: 153-156.
[43] Braun J. Three-dimensional numerical simulations of crustal-scale wrenching using a non-linear failure criterion[J]. Journal of Structural Geology, 1994, 16(8): 1 173-1 186. 
[44] Braun J, Sambridge M. Dynamical Lagrangian Remeshing (DLR): a new algorithm for solving large strain deformation problems and its application to fault-propagation folding[J]. Earth and Planetary Science Letters, 1994, 124: 211-220. 
[45] Beaumont C, Quinlan G. A geodynamic framework for interpreting crustal-scale seismic- reflectivity patterns in compressional orogens[J]. Geophysical Journal International, 1994, 116: 754-783.

文章导航

/