干旱胁迫下植物气孔导度估算模型研究进展与展望
收稿日期: 2025-07-07
修回日期: 2025-08-07
网络出版日期: 2025-08-31
基金资助
国家自然科学基金面上项目(42271043);甘肃省优秀博士生项目(24JRRA109)
Review of Research Advances and Future Perspectives of Modeling Stomatal Conductance of Plants Under Drought Stress
Received date: 2025-07-07
Revised date: 2025-08-07
Online published: 2025-08-31
Supported by
the National Natural Science Foundation of China(42271043);Gansu Planning Projects on Science and Technology-Outstanding Ph. D. Student Program(24JRRA109)
干旱胁迫会通过土壤和大气两条路径影响植物气孔行为,气孔导度作为植物适应干旱胁迫的重要生理指标,受环境因素和植物内部机制双重调控。通过对国内外研究的分析,梳理了干旱胁迫情境下气孔导度模型的发展与应用,包括Jarvis类经验模型和Ball-Berry类半经验模型,以及基于水力学理论和气孔优化理论的两类机理模型,深入剖析了其各自的优势与不足。总体来说,经验与半经验模型缺乏生物物理机制,机理模型虽复杂,但能阐明干旱胁迫下气孔行为的内在规律,仍是未来研究的核心方向。此外,机器学习与稳定同位素等新兴技术的发展也为气孔导度模型改进提供了新途径,这些技术不仅拓宽了气孔导度模型的理论边界,也在一定程度上提高了对干旱胁迫下植物气孔导度的模拟能力。最后提出了未来研究的发展方向与建议,明确了未来需深化机理认知,并融合先进技术发展高精度、强机理气孔导度模型,为深入认识干旱胁迫下优化植物光合和蒸腾过程及气孔调节提供了更为坚实的理论支持和方法借鉴。
陈锐 , 吉喜斌 , 赵文玥 . 干旱胁迫下植物气孔导度估算模型研究进展与展望[J]. 地球科学进展, 2025 , 40(9) : 877 -889 . DOI: 10.11867/j.issn.1001-8166.2025.077
Drought stress affects plant stomatal behavior through both soil and atmospheric pathways. Stomatal conductance is an essential physiological parameter for plant adaptation to drought stress, regulated by both internal and external environmental factors. This review synthesizes findings from domestic and international studies on the development and application of stomatal conductance models under drought stress scenarios, including Jarvis-type empirical models, Ball-Berry-type semi-empirical models, and two types of mechanistic models based on stomatal hydraulic theory and optimization theory. The respective advantages and limitations of each model type are analyzed. Despite being straightforward and practical, empirical and semi-empirical models of stomatal conductance have a weak theoretical foundation and cannot adequately explain the biophysical mechanisms. In contrast, mechanistic models have greater biophysical explanatory power and adaptability. Despite their complexity, they can clarify the inherent patterns of stomatal behavior under drought stress. This makes them a universal predictive framework for simulating stomatal conductance in plants under complex drought conditions. Considering the numerous obstacles to the creation of mechanistic models of stomatal conductance, more research in this area is crucial. In addition, the development of emerging technologies such as machine learning and stable isotopes has provided new avenues for model improvement, which have not only broadened the theoretical boundaries of the models but have also improved the simulation ability of stomatal conductance in plants under drought stress. We conclude by outlining our prognosis and recommendations for future research directions, emphasizing the necessity of incorporating cutting-edge technology and expanding mechanistic knowledge to create robust and high-precision mechanistic stomatal conductance models. This study will offer a stronger theoretical foundation and methodological point of reference for a more thorough understanding of how to optimize transpiration, photosynthesis, and stomatal regulation in drought-stressed plants.
| [1] | AULT T R. On the essentials of drought in a changing climate[J]. Science, 2020, 368(6 488): 256-260. |
| [2] | ZHAO Wenyue, JI Xibin. A review of research advances and future perspectives of evaporation of intercepted rainfall from sparse tree canopy in drylands[J]. Advances in Earth Science, 2021, 36(8): 862-879. |
| 赵文玥, 吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879. | |
| [3] | GEBRECHORKOS S H, SHEFFIELD J, VICENTE-SERRANO S M, et al. Warming accelerates global drought severity[J]. Nature, 2025, 642(8 068): 628-635. |
| [4] | CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119. |
| 陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119. | |
| [5] | QI Y, ZHANG Q, HU S J, et al. Applicability of stomatal conductance models comparison for persistent water stress processes of spring maize in water resources limited environmental zone[J]. Agricultural Water Management, 2023, 277. DOI:10.1016/j.agwat.2022.108090 . |
| [6] | DAMOUR G, SIMONNEAU T, COCHARD H, et al. An overview of models of stomatal conductance at the leaf level: models of stomatal conductance[J]. Plant, Cell & Environment, 2010, 33(9): 1 419-1 438. |
| [7] | BERAUER B J, STEPPUHN A, SCHWEIGER A H. The multidimensionality of plant drought stress: the relative importance of edaphic and atmospheric drought[J]. Plant, Cell & Environment, 2024, 47(9): 3 528-3 540. |
| [8] | NIU Z M, LI G T, HU H Y, et al. A gene that underwent adaptive evolution, LAC2 (LACCASE), in Populus euphratica improves drought tolerance by improving water transport capacity[J]. Horticulture Research, 2021, 8. DOI:10.1038/s41438-021-00518-x . |
| [9] | de LIMA B P R, BARTHOLOMEW D C, BANIN L F, et al. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo[J]. New Phytologist, 2022, 235(6): 2 183-2 198. |
| [10] | MERCADO-REYES J A, PEREIRA T S, MANANDHAR A, et al. Extreme drought can deactivate ABA biosynthesis in embolism-resistant species[J]. Plant, Cell & Environment, 2024, 47(2): 497-510. |
| [11] | JARVIS P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 1976, 273(927): 593-610. |
| [12] | NOE S M, GIERSCH C. A simple dynamic model of photosynthesis in oak leaves: coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool[J]. Functional Plant Biology, 2004, 31(12). DOI: 10.1071/FP03251 . |
| [13] | STEWART J B. Modelling surface conductance of pine forest[J]. Agricultural and Forest Meteorology, 1988, 43(1): 19-35. |
| [14] | BUCKLEY T N. The control of stomata by water balance[J]. New Phytologist, 2005, 168(2): 275-292. |
| [15] | BALL J T, WOODROW I E, BERRY J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[M]// Progress in photosynthesis research. Dordrecht: Springer Netherlands, 1987: 221-224. |
| [16] | BALL J T. An analysis of stomatal conductance: vol. 670[M]. Stanford: Stanford University Stanford, 1988. |
| [17] | LEUNING R. A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants[J]. Plant, Cell & Environment, 1995, 18(4): 339-355. |
| [18] | JONES H G, SUTHERLAND R A. Stomatal control of xylem embolism[J]. Plant, Cell & Environment, 1991, 14(6): 607-612. |
| [19] | OREN R, SPERRY J S, KATUL G G, et al. Survey and synthesis of intra‐ and interspecific variation in stomatal sensitivity to vapour pressure deficit[J]. Plant, Cell & Environment, 1999, 22(12): 1 515-1 526. |
| [20] | FARQUHAR G D, von CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90. |
| [21] | MEDLYN B E, DUURSMA R A, EAMUS D, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance: reconciling optimal and empirical stomatal models[J]. Global Change Biology, 2011, 17(6): 2 134-2 144. |
| [22] | MIRA-GARCíA A B, ROMERO-TRIGUEROS C, GAMBíN J M B, et al. Estimation of stomatal conductance by infra-red thermometry in citrus trees cultivated under regulated deficit irrigation and reclaimed water[J]. Agricultural Water Management, 2023, 276. DOI:10.1016/j.agwat.2022.108057 . |
| [23] | STRUTHERS R, IVANOVA A, TITS L, et al. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 9-17. |
| [24] | HOUSHMANDFAR A, O’LEARY G, FITZGERALD G J, et al. Machine learning produces higher prediction accuracy than the Jarvis-type model of climatic control on stomatal conductance in a dryland wheat agro-ecosystem[J]. Agricultural and Forest Meteorology, 2021. DOI:10.1016/j.agrformet.2021.108423 . |
| [25] | XIE J X, CHEN Y F, YU Z B, et al. Estimating stomatal conductance of Citrus under water stress based on multispectral imagery and machine learning methods[J]. Frontiers in Plant Science, 2023, 14. DOI:10.3389/fpls.2023.1054587 . |
| [26] | ZHANG J X, THAPA K, BAI G F, et al. Improved estimation of stomatal conductance by combining high-throughput plant phenotyping data and weather variables through machine learning[J]. Agricultural Water Management, 2025, 309. DOI:10.1016/j.agwat.2025.109321 . |
| [27] | LIN W, BARBOUR M M, SONG X. Do changes in tree-ring δ18O indicate changes in stomatal conductance [J]. New Phytologist, 2022, 236(3): 803-808. |
| [28] | PU X, LYU L X. Disentangling the impact of photosynthesis and stomatal conductance on rising water-use efficiency at different altitudes on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2023, 341. DOI:10.1016/j.agrformet.2023.109659 . |
| [29] | SIEGWOLF R T W, LEHMANN M M, GOLDSMITH G R, et al. Updating the dual C and O isotope—gas‐exchange model: a concept to understand plant responses to the environment and its implications for tree rings[J]. Plant, Cell & Environment, 2023, 46(9): 2 606-2 627. |
| [30] | DIAO H Y, CERNUSAK L A, SAURER M, et al. Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques[J]. New Phytologist, 2024, 241(6): 2 366-2 378. |
| [31] | CHENG K H, SUN Z Z, ZHONG W L, et al. Enhancing wheat crop physiology monitoring through spectroscopic analysis of stomatal conductance dynamics[J]. Remote Sensing of Environment, 2024, 312. DOI:10.1016/j.rse.2024.114325 . |
| [32] | BUCKLEY T N, MOTT K A. Modelling stomatal conductance in response to environmental factors[J]. Plant, Cell & Environment, 2013, 36(9): 1 691-1 699. |
| [33] | BAI Y, LI X Y, LIU S M, et al. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem[J]. Agricultural and Forest Meteorology, 2017, 246: 98-110. |
| [34] | GREEN J K, ZHANG Y, LUO X, et al. Systematic underestimation of canopy conductance sensitivity to drought by Earth system models[J]. AGU Advances, 2024, 5(1). DOI:10.1029/2023AV001026 . |
| [35] | OLSOY P J, ZAIATS A, DELPARTE D M, et al. High-resolution thermal imagery reveals how interactions between crown structure and genetics shape plant temperature[J]. Remote Sensing in Ecology and Conservation, 2024, 10(1): 106-120. |
| [36] | LUO Dandan, WANG Chuankuan, JIN Ying. Stomatal regulation of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4 333-4 343. |
| 罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 2019, 30(12): 4 333-4 343. | |
| [37] | WU X, XU Y Q, SHI J C, et al. Estimating stomatal conductance and evapotranspiration of winter wheat using a soil-plant water relations-based stress index[J]. Agricultural and Forest Meteorology, 2021, 303. DOI:10.1016/j.agrformet.2021.108393 . |
| [38] | MISSON L, PANEK J A, GOLDSTEIN A H. A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests[J]. Tree Physiology, 2004, 24(5): 529-541. |
| [39] | WANG Tianye, WANG Ping, WU Zening, et al. Progress in the study of ecological resilience of vegetation under drought stress[J]. Advances in Earth Science, 2023, 38(8): 790-801. |
| 王田野, 王平, 吴泽宁, 等. 干旱胁迫下植被生态韧性研究进展[J]. 地球科学进展, 2023, 38(8): 790-801. | |
| [40] | LEUNING R. Modelling stomatal behaviour and photosynthesis of eucalyptus grandis[J]. Functional Plant Biology, 1990, 17(2): 159-175. |
| [41] | ZHANG N Y, LI G, YU S X, et al. Can the responses of photosynthesis and stomatal conductance to water and nitrogen stress combinations be modeled using a single set of parameters [J]. Frontiers in Plant Science, 2017, 8. DOI:10.3389/fpls.2017.00328 . |
| [42] | MIAO Y X, CAI Y, WU H, et al. Diurnal and seasonal variations in the photosynthetic characteristics and the gas exchange simulations of two rice cultivars grown at ambient and elevated CO2 [J]. Frontiers in Plant Science, 2021, 12. DOI:10.3389/fpls.2021.651606 . |
| [43] | CUADRA S V, KIMBALL B A, BOOTE K J, et al. Energy balance in the DSSAT-CSM-CROPGRO model[J]. Agricultural and Forest Meteorology, 2021, 297. DOI:10.1016/j.agrformet.2020.108241 . |
| [44] | COUSSEMENT J R, de SWAEF T, LOOTENS P, et al. Turgor-driven plant growth applied in a soybean functional-structural plant model[J]. Annals of Botany, 2020, 126(4): 729-744. |
| [45] | FRANKS P J, HEROLD N, BONAN G B, et al. Land surface conductance linked to precipitation: co-evolution of vegetation and climate in Earth system models[J]. Global Change Biology, 2024, 30(3). DOI:10.1111/gcb.17188 . |
| [46] | ZHU Y, ZHANG L H, LI F, et al. Comparison of data fusion methods in fusing satellite products and model simulations for estimating soil moisture on semi-arid grasslands[J]. Remote Sensing, 2023, 15(15). DOI:10.3390/rs15153789 . |
| [47] | CAO Z D, ZHU T J, CAI X M. Hydro-agro-economic optimization for irrigated farming in an arid region: the Hetao Irrigation District, Inner Mongolia[J]. Agricultural Water Management, 2023, 277. DOI:10.1016/j.agwat.2022.108095 . |
| [48] | LI S N, FLEISHER D H, TIMLIN D, et al. Improving simulations of rice in response to temperature and CO2 [J]. Agronomy, 2022, 12(12). DOI:10.3390/agronomy12122927 . |
| [49] | WANG Q L, HE Q J, ZHOU G S. Applicability of common stomatal conductance models in maize under varying soil moisture conditions[J]. Science of the Total Environment, 2018, 628/629: 141-149. |
| [50] | WEI Z H, DU T S, LI X N, et al. Simulation of stomatal conductance and water use efficiency of tomato leaves exposed to different irrigation regimes and air CO2 concentrations by a modified “ball-berry” model[J]. Frontiers in Plant Science, 2018, 9. DOI:10.3389/fpls.2018.00445 . |
| [51] | LI C, WANG N J, LUO X Q, et al. Introducing water factors improves simulations of maize stomatal conductance models under plastic film mulching in arid and semi-arid irrigation areas[J]. Journal of Hydrology, 2023, 617. DOI:10.1016/j.jhydrol.2022.128908 . |
| [52] | LI C, ZHANG Y X, WANG J G, et al. Considering water-temperature synergistic factors improves simulations of stomatal conductance models under plastic film mulching[J]. Agricultural Water Management, 2024, 306. DOI:10.1016/j.agwat.2024.109211 . |
| [53] | GUTSCHICK V P, SIMONNEAU T. Modelling stomatal conductanceof field-grown sunflower under varying soil water content and leafenvironment: comparison of three models of stomatal response toleaf environment and coupling with an abscisic acid-based modelof stomatal response to soil drying[J]. Plant, Cell & Environment, 2002, 25(11): 1 423-1 434. |
| [54] | AHMADI S H, ANDERSEN M N, POULSEN R T, et al. A quantitative approach to developing more mechanistic gas exchange models for field grown potato: a new insight into chemical and hydraulic signalling[J]. Agricultural and Forest Meteorology, 2009, 149(9): 1 541-1 551. |
| [55] | YE Zipiao, YU Qiang. Mechanism model of stomatal conductance [J]. Chinese Journal of Plant Ecology, 2009, 33(4): 772-782. |
| 叶子飘, 于强. 植物气孔导度的机理模型[J]. 植物生态学报, 2009, 33(4): 772-782. | |
| [56] | LIU H, SONG S B, ZHANG H, et al. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought[J]. International Journal of Molecular Sciences, 2022, 23(23). DOI:10.3390/ijms232314824 . |
| [57] | LIU X D, ZENG Y Y, HASAN M M, et al. Diverse functional interactions between ABA and ethylene in plant development and responses to stress[J]. Physiologia Plantarum, 2024, 176(6). DOI:10.1111/ppl.70000 . |
| [58] | TUZET A, PERRIER A, LEUNING R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell & Environment, 2003, 26(7): 1 097-1 116. |
| [59] | BI M H, JIANG C, BRODRIBB T, et al. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought[J]. Tree Physiology, 2023, 43(6): 883-892. |
| [60] | RUI M M, CHEN R J, JING Y, et al. Guard cell and subsidiary cell sizes are key determinants for stomatal kinetics and drought adaptation in cereal crops[J]. New Phytologist, 2024, 242(6): 2 479-2 494. |
| [61] | LLOYD J, FARQUHAR G D. 13C discrimination during CO2 assimilation by the terrestrial biosphere[J]. Oecologia, 1994, 99(3/4): 201-215. |
| [62] | BUCKLEY T N. Modeling stomatal conductance[J]. Plant Physiology, 2017, 174(2): 572-582. |
| [63] | LUO Dandan, WANG Chuankuan, JIN Ying. Plant water-regulation strategies: isohydric versus anisohydric behavior[J]. Chinese Journal of Plant Ecology, 2017, 41(9): 1 020-1 032. |
| 罗丹丹, 王传宽, 金鹰. 植物水分调节对策:等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1 020-1 032. | |
| [64] | RUI M M, JING Y, JIANG H J, et al. Quantitative system modeling bridges the gap between macro- and microscopic stomatal model[J]. Advanced Biology, 2022, 6(10). DOI:10.1002/adbi.202200131 . |
| [65] | DEWAR R C. Interpretation of an empirical model for stomatal conductance in terms of guard cell function[J]. Plant, Cell & Environment, 1995, 18(4): 365-372. |
| [66] | BUCKLEY T N, MOTT K A, FARQUHAR G D. A hydromechanical and biochemical model of stomatal conductance[J]. Plant, Cell & Environment, 2003, 26(10): 1 767-1 785. |
| [67] | BUCKLEY T N, TURNBULL T L, ADAMS M A. Simple models for stomatal conductance derived from a process model: cross‐validation against sap flux data[J]. Plant, Cell & Environment, 2012, 35(9): 1 647-1 662. |
| [68] | DEWAR R C. The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function[J]. Plant, Cell & Environment, 2002, 25(11): 1 383-1 398. |
| [69] | RODRIGUEZ-DOMINGUEZ C M, BUCKLEY T N, EGEA G, et al. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor[J]. Plant, Cell & Environment, 2016, 39(9): 2 014-2 026. |
| [70] | MCDOWELL N G, SAPES G, PIVOVAROFF A, et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit[J]. Nature Reviews Earth & Environment, 2022, 3(5): 294-308. |
| [71] | BRODRIBB T J, MCADAM S A, CARINS M M R. Xylem and stomata, coordinated through time and space[J]. Plant, Cell & Environment, 2017, 40(6): 872-880. |
| [72] | BUCKLEY T N. How do stomata respond to water status [J]. New Phytologist, 2019, 224(1): 21-36. |
| [73] | COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31: 471-505. |
| [74] | JIN Jiaxin, ZHANG Fengyan, WANG Han, et al. Optimization of the stomatal conductance slope in the conductance-photosynthesis model and improved estimation of transpiration in evergreen forests[J]. Advances in Earth Science, 2023, 38(9): 931-942. |
| 金佳鑫, 张凤焰, 王焓, 等. 常绿林“导度—光合”模型斜率参数优化与蒸腾估算改进[J]. 地球科学进展, 2023, 38(9): 931-942. | |
| [75] | ZHUANG J, WANG Q, JIN J. Improved modeling of leaf stomatal conductance by incorporating its highly dynamic responses to varying light conditions in Mango species (Mangifera indica L.)[J]. Scientia Horticulturae, 2024, 328. DOI:10.1016/j.scienta.2024.112894 . |
| [76] | WU J, SERBIN S P, ELY K S, et al. The response of stomatal conductance to seasonal drought in tropical forests[J]. Global Change Biology, 2020, 26(2): 823-839. |
| [77] | WOLF A, ANDEREGG W R L, PACALA S W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment[J]. Proceedings of the National Academy of Sciences, 2016, 113(46). DOI:10.1073/pnas.1615144113 . |
| [78] | SPERRY J S, VENTURAS M D, ANDEREGG W R L, et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost[J]. Plant, Cell & Environment, 2017, 40(6): 816-830. |
| [79] | YANG J, DUURSMA R A, de KAUWE M G, et al. Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit[J]. Tree Physiology, 2019, 39(12): 1 961-1 974. |
| [80] | LI Q Y, SERBIN S P, LAMOUR J, et al. Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)[J]. Geoscientific Model Development, 2022, 15(11): 4 313-4 329. |
| [81] | MANZONI S, VICO G, PALMROTH S, et al. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture[J]. Advances in Water Resources, 2013, 62: 90-105. |
| [82] | PRENTICE I C, DONG N, GLEASON S M, et al. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology[J]. Ecology Letters, 2014, 17(1): 82-91. |
| [83] | ANDEREGG W R L. Quantifying seasonal and diurnal variation of stomatal behavior in a hydraulic-based stomatal optimization model[J]. Journal of Plant Hydraulics, 2018, 5. DOI:10.20870/jph.2018.e001 . |
| [84] | ELLER C B, ROWLAND L, OLIVEIRA R S, et al. Modelling tropical forest responses to drought and El Ni?o with a stomatal optimization model based on xylem hydraulics[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373(1 760). DOI:10.1098/rstb.2017.0315 . |
| [85] | SABOT M E B, de KAUWE M G, PITMAN A J, et al. Plant profit maximization improves predictions of European forest responses to drought[J]. New Phytologist, 2020, 226(6): 1 638-1 655. |
| [86] | DEWAR R, MAURANEN A, M?KEL? A, et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis[J]. New Phytologist, 2018, 217(2): 571-585. |
| [87] | CHEN Y T, LIANG K H, CUI B J, et al. Incorporating the temperature responses of stomatal and non-stomatal limitations to photosynthesis improves the predictability of the unified stomatal optimization model for wheat under heat stress[J]. Agricultural and Forest Meteorology, 2025, 362. DOI:10.1016/j.agrformet.2025.110381 . |
| [88] | BASSIOUNI M, VICO G. Parsimony vs. predictive and functional performance of three stomatal optimization principles in a big-leaf framework[J]. New Phytologist, 2021, 231(2): 586-600. |
| [89] | HAWKINS L R, BASSOUNI M, ANDEREGG W R L, et al. Comparing model representations of physiological limits on transpiration at a semi-arid ponderosa pine site[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(11). DOI:10.1029/2021MS002927 . |
| [90] | CARMINATI A, JAVAUX M. Soil rather than xylem vulnerability controls stomatal response to drought[J]. Trends in Plant Science, 2020, 25(9): 868-880. |
| [91] | VIALET-CHABRAND S, LAWSON T. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment[J]. Journal of Experimental Botany, 2019, 70(10): 2 839-2 855. |
| [92] | GEEVARETNAM J L, MEGAT M Z N, KAMARUDDIN N,et al. Predicting the carbon dioxide emissions using machine learning[J]. International Journal of Innovative Computing, 2022, 12(2): 17-23. |
| [93] | ACHEAMPONG A O, BOATENG E B. Modelling carbon emission intensity: application of artificial neural network[J]. Journal of Cleaner Production, 2019, 225: 833-856. |
| [94] | SALEH C, DZAKIYULLAH N R, NUGROHO J B. Carbon dioxide emission prediction using support vector machine[J]. IOP Conference Series: Materials Science and Engineering, 2016, 114. DOI 10.1088/1757-899X/114/1/012148. |
| [95] | SAUNDERS A, DREW D M. Stomatal responses of Eucalyptus spp. under drought can be predicted with a gain-risk optimization model[J]. Tree Physiology, 2022, 42(4): 815-830. |
| [96] | XU Z W, LIU S M, ZHU Z L, et al. Exploring evapotranspiration changes in a typical endorheic basin through the integrated observatory network[J]. Agricultural and Forest Meteorology, 2020, 290. DOI:10.1016/j.agrformet.2020.108010 . |
| [97] | XUE W, HE X M, WANG Q, et al. An improved representative of stomatal models for predicting diurnal stomatal conductance at low irradiance and vapor pressure deficit in tropical rainforest trees[J]. Agricultural and Forest Meteorology, 2024, 354. DOI:10.1016/j.agrformet.2024.110098 . |
| [98] | BODIN P E, GAGEN M, MCCARROLL D, et al. Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (δ13 C): implications for assessing physiological forcing[J]. Global Change Biology, 2013, 19(6): 1 709-1 719. |
| [99] | SHAN N, ZHANG Y G, CHEN J M, et al. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2021, 252. DOI:10.1016/j.rse.2020.112134 . |
| [100] | ZHANG Z Y, GUANTER L, PORCAR-CASTELL A, et al. Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2023, 285. DOI:10.1016/j.rse.2022.113383 . |
| [101] | LI T, KROMDIJK J, HEUVELINK E, et al. Effects of diffuse light on radiation use efficiency of two Anthurium Cultivars depend on the response of stomatal conductance to dynamic light intensity[J]. Frontiers in Plant Science, 2016, 7. DOI:10.3389/fpls.2016.00056 . |
| [102] | ZHANG Y, FANG J N, SMITH W K, et al. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest US drought[J]. Global Change Biology, 2023, 29(12): 3 395-3 408. |
| [103] | MOHD A M S, MERTENS S, VERBRAEKEN L, et al. Non-destructive analysis of plant physiological traits using hyperspectral imaging: a case study on drought stress[J]. Computers and Electronics in Agriculture, 2022, 195. DOI:10.1016/j.compag.2022.106806 . |
| [104] | WANG R J, ZHENG J H, MAO X R, et al. Scaling solar-induced chlorophyll fluorescence by using VPD0.5 improves the simulation of reference crop evapotranspiration in the arid and semiarid regions of northern China[J]. Journal of Hydrology, 2023, 626. DOI:10.1016/j.jhydrol.2023.130254 . |
/
| 〈 |
|
〉 |