我国近46年暖季复合极端高温—极端降水事件特征
收稿日期: 2025-06-24
修回日期: 2025-08-20
网络出版日期: 2025-08-31
基金资助
国家重点研发计划项目(2022YFF0801601)
Characteristics of Compound Heatwaves and Precipitation Extremes of Warming Season in China from 1979 to 2024
Received date: 2025-06-24
Revised date: 2025-08-20
Online published: 2025-08-31
Supported by
the National Key Research and Development Program of China(2022YFF0801601)
人类活动与全球变暖增加了极端高温和极端降水事件发生的概率,二者复合的事件严重影响着居民健康、社会经济和生态系统。基于1979—2024年逐日气温和降水数据,引入干、湿极端高温以细化事件类型,分析了我国近46年暖季(5~9月)复合极端高温—极端降水事件的频数、强度和影响范围的特征,发现全国此类事件的发生频率与影响范围均呈快速增长趋势,且在2000年后增速加快。复合事件中极端高温和极端降水强度,均显著高于单独的极端高温和降水事件,2000年后复合事件的强度和极端程度,较1979—2000年明显增强。进一步区分干、湿极端高温类型发现,湿极端高温复合事件集中于河西走廊和四川盆地等频发区,而干极端高温复合事件在全国范围内分布相对均匀。近46年湿极端高温复合事件在全部复合事件的占比持续上升,且其极端高温强度强于干极端高温,这一特征预示,湿极端高温复合事件相比单独极端事件和干极端高温复合事件造成损失的风险更高,且随着全球变暖加剧、潜在风险正在逐渐增大,需持续重点关注。
王若骥 , 黄丹青 . 我国近46年暖季复合极端高温—极端降水事件特征[J]. 地球科学进展, 2025 , 40(9) : 974 -986 . DOI: 10.11867/j.issn.1001-8166.2025.080
Anthropogenic activities and global warming have amplified the likelihood of heatwaves and precipitation extremes. In particular, compound heatwaves and precipitation extremes pose severe threats to public health, society, and ecosystems. Based on daily temperature and precipitation data from the ERA5 reanalysis from 1979 to 2024, this study introduced a classification of dry and moist heatwaves to analyze the frequency, magnitude, and temporal evolution of compound heatwaves and precipitation extremes over China during the warm season (from May to September). The results revealed a rapid increase in the occurrence and spatial extent of such events nationwide, with an accelerating trend observed after the year 2000. The heatwave magnitudes of the temperature and precipitation extreme magnitudes were found to be significantly higher than those of individual extremes, with enhanced extremeness after 2000. For comparison, the moist heatwave compound extremes were concentrated in frequent occurrence regions, such as the Hexi Corridor and Sichuan Basin, while dry heatwave compound extremes showed a nearly uniform distribution across the country. From 1979 to 2024 the proportion of moist heat wave compound events increased. Moreover, the heatwave magnitude of the temperature in moist heatwave compound extremes was stronger than that in dry heatwave compound extremes, suggesting a higher risk of damage compared to individual extremes or dry heatwave compound extremes. This potential risk is projected to escalate further with ongoing global warming, which requires sustained monitoring.
| [1] | YANG Yirong, YUAN Chaoxia. Mechanisms of compound extreme heat-precipitation events in northwestern China[J]. Transactions of Atmospheric Sciences, 2025, 48(1):62-76. |
| 杨怡蓉,袁潮霞,中国西北地区复合极端高温—降水事件可能成因[J].大气科学学报,2025,48(1):62-76. | |
| [2] | PERKINS S E. A review on the scientific understanding of heatwaves: their measurement, driving mechanisms, and changes at the global scale[J]. Atmospheric Research, 2015, 164/165: 242-267. |
| [3] | XU Z W, FITZGERALD G, GUO Y M, et al. Impact of heatwave on mortality under different heatwave definitions: a systematic review and Meta-analysis[J]. Environment International, 2016, 89/90: 193-203. |
| [4] | SCHLENKER W, ROBERTS M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15 594-15 598. |
| [5] | DUINE G J, CARVALHO L M V, JONES C. Mesoscale patterns associated with two distinct heatwave events in coastal Santa Barbara, California, and their impact on local fire risk conditions[J]. Weather and Climate Extremes, 2022, 37. DOI: 10.1016/j.wace.2022.100482 . |
| [6] | DU H B, ALEXANDER L V, DONAT M G, et al. Precipitation from persistent extremes is increasing in most regions and globally[J]. Geophysical Research Letters, 2019, 46(11): 6 041-6 049. |
| [7] | SUN Q H, ZHANG X B, ZWIERS F, et al. A global, continental, and regional analysis of changes in extreme precipitation[J]. Journal of Climate, 2021, 34(1): 243-258. |
| [8] | LI Y, ZHAO S S. Floods losses and hazards in China from 2001 to 2020[J]. Climate Change Research, 2022, 18(2): 154-165. |
| [9] | SENEVIRATNE S I, ZHANG X, ADNAN M, et al. Weather and climate extreme events in a changing climate[M]// Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021: 1 513-1 766. |
| [10] | FANG Jian, TAO Kai, MU Sha, et al. Progress of research on compound extreme event and hazard assessment[J]. Progress in Geography, 2023, 42(3): 587-601. |
| 方建, 陶凯, 牟莎, 等. 复合极端事件及其危险性评估研究进展[J]. 地理科学进展, 2023, 42(3): 587-601. | |
| [11] | KEMTER M, FISCHER M, LUNA L V, et al. Cascading hazards in the aftermath of Australia’s 2019/2020 black summer wildfires[J]. Earth’s Future, 2021, 9(3). DOI:10.1029/2020EF001884 . |
| [12] | LIU J H, CHEN J, YIN J B, et al. Understanding compound extreme precipitations preconditioned by heatwaves over China under climate change[J]. Environmental Research Letters, 2024, 19(6). DOI: 10.1088/1748-9326/ad50ee . |
| [13] | YOU J W, WANG S. Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall[J]. Geophysical Research Letters, 2021, 48(17). DOI: 10.1029/2021GL094831 . |
| [14] | DING Yihui, LIU Yanju, XU Ying, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. |
| 丁一汇,柳艳菊,徐影,等.全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J].地球科学进展,2023, 38(6): 551-562. | |
| [15] | CHEN Y, LIAO Z, SHI Y, et al. Greater flash flood risks from hourly precipitation extremes preconditioned by heatwaves in the Yangtze River valley[J]. Geophysical Research Letters, 2022, 49(18). DOI:10.1029/2022GL099485 . |
| [16] | SUN P, BIAN Y J, YU S F, et al. Are longer and more intense heatwaves more prone to extreme precipitation?[J]. Global and Planetary Change, 2024, 236. DOI: 10.1016/j.gloplacha.2024.104428 . |
| [17] | HUANG D Q, DAI A G, ZHU J, et al. Recent winter precipitation changes over eastern China in different warming periods and the associated East Asian jets and oceanic conditions[J]. Journal of Climate, 2017, 30(12): 4 443-4 462. |
| [18] | ZANG Naihui. Observation characteristics, mechanism and projection of the early onset of extreme heat events in eastern China[D]. Lanzhou: Lanzhou University, 2024. |
| 臧乃珲.中国东部地区极端高温事件早发性特征、机理及预估研究[D]. 兰州:兰州大学, 2024. | |
| [19] | ZHU Baoyan. The mechanisms and prediction for the interannual/interdecadal variability of summer extreme high-temperature frequency over East China[D]. Nanjing: Nanjing University of Information Science and Technology, 2023. |
| 朱宝艳.中国东部夏季极端高温频次年际/年代际变化的机制及预测[D]. 南京:南京信息工程大学,2023. | |
| [20] | QI Y M, HUANG D Q, CHEN J, et al. Variations and comparisons in hourly and daily precipitation extremes over eastern China in recent warming periods[J]. International Journal of Climatology, 2024, 44(14): 5 192-5 206. |
| [21] | MARTINKOVA M, KYSELY J. Overview of observed Clausius-Clapeyron scaling of extreme precipitation in midlatitudes[J]. Atmosphere, 2020, 11(8). DOI: 10.3390/atmos11080786 . |
| [22] | FISCHER E M, KNUTTI R. Observed heavy precipitation increase confirms theory and early models[J]. Nature Climate Change, 2016, 6(11): 986-991. |
| [23] | HUANG D Q, ZHU J, XIAO X C, et al. Understanding the sensitivity of hourly precipitation extremes to the warming climate over eastern China[J]. Environmental Research Communications, 2021, 3(8). DOI: 10.1088/2515-7620/ac17e1 . |
| [24] | AN N, ZUO Z Y. Investigating the influence of synoptic circulation patterns on regional dry and moist heat waves in North China[J]. Climate Dynamics, 2021, 57(3): 1 227-1 240. |
| [25] | SUN S, ZHANG Q, SINGH V P, et al. Increased moist heat stress risk across China under warming climate[J]. Scientific Reports, 2022, 12. DOI: 10.1038/s41598-022-27162-2 . |
| [26] | HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1 999-2 049. |
| [27] | HERSBACH H, COMYN-PLATT E, BELL B, et al. ERA5 post-processed daily-statistics on pressure levels from 1940 to present[DB]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2023. DOI: 10.24381/cds.4991cf48 . |
| [28] | LYON B, BARNSTON A G. Diverse characteristics of U.S. summer heat waves[J]. Journal of Climate, 2017, 30(19): 7 827-7 845. |
| [29] | KHAN M, BHATTARAI R, CHEN L. Elevated risk of compound extreme precipitation preceded by extreme heat events in the upper midwestern United States[J]. Atmosphere, 2023, 14(9). DOI: 10.3390/atmos14091440 . |
| [30] | YOU J W, WANG S, ZHANG B E, et al. Growing threats from swings between hot and wet extremes in a warmer world[J]. Geophysical Research Letters, 2023, 50(14). DOI: 10.1029/2023GL104075 . |
| [31] | WEST R M. Best practice in statistics: use the Welch t-test when testing the difference between two groups[J]. Annals of Clinical Biochemistry, 2021, 58(4): 267-269. |
| [32] | CHEN J, DAI A G. The atmosphere has become increasingly unstable during 1979-2020 over the Northern Hemisphere[J]. Geophysical Research Letters, 2023, 50(20). DOI:10.1029/2023GL106125 . |
| [33] | YANG Yuanjian, LUO Fu, XUE Jiesheng, et al. Research progress and perspective on synergy between urban heat waves and canopy urban heat island[J]. Advances in Earth Science, 2024, 39(4): 331-346. |
| 杨元建,罗芙,薛捷升,等.城市热浪与冠层热岛协同作用研究进展与展望[J].地球科学进展,2024,39(4):331-346. |
/
| 〈 |
|
〉 |