北方农牧交错带植被恢复对区域陆气相互作用和水循环的影响
收稿日期: 2025-03-24
修回日期: 2025-05-12
网络出版日期: 2025-08-22
基金资助
国家自然科学基金项目(42030501);国家自然科学基金项目(42401011);甘肃省自然科学基金项目(25JRRA662)
Impacts of Vegetation Restoration in the Agro-Pastoral Ecotone of Northern China on Regional Land-Atmosphere Interactions and Hydrological Cycle
Received date: 2025-03-24
Revised date: 2025-05-12
Online published: 2025-08-22
Supported by
the National Natural Science Foundation of China(42030501);The National Natural Science Foundation of Gansu(25JRRA662)
北方农牧交错带是我国农牧业协同发展核心区和生态安全屏障。植被恢复显著改变了该区生态环境和水文气候状况,但现有研究对其影响过程和机制尚未充分阐明。利用遥感和再分析数据,结合WRF-tagging模型,探究了北方农牧交错带植被恢复对区域陆气相互作用和水循环的影响。结果表明:①北方农牧交错带2000—2015年植被指数呈显著增加趋势,陆地生态系统的固碳能力逐渐提升,水分利用效率整体表现为增加趋势。②植被恢复使得该区域蒸散发显著增加,并通过水分再循环过程贡献了北方农牧交错带降水的10.8%,北方农牧交错带降水再循环率呈显著增加趋势,表明植被恢复通过增强区域水分再循环过程增加了对本地降水的贡献;东亚夏季风和中纬度西风的协同作用主导北方农牧交错带生长季蒸散发水汽输送,植被恢复通过植被蒸腾作用增加了区域水汽通量,提升了降水形成过程中再循环水汽比例,促进降水再循环过程,对下风向区域降水产生积极作用。③植被恢复通过降低反照率,以增加净辐射吸收、提升边界层湍流动能、促进水汽垂直混合;并通过增加蒸散发与水平流入水汽输入来提高大气湿度、降低抬升凝结高度等,协同改变湿静能与对流有效势能,最终触发深层对流发展,进而改变区域降水效率及降水。研究可为农牧交错带植被恢复可持续建设和水资源安全提供科学支撑。
王学锦 , 张宝庆 , 贺缠生 . 北方农牧交错带植被恢复对区域陆气相互作用和水循环的影响[J]. 地球科学进展, 2025 , 40(7) : 737 -752 . DOI: 10.11867/j.issn.1001-8166.2025.049
The Agro-Pastoral Ecotone of Northern China (APENC) serves as both a core area for grain and livestock production and a critical ecological barrier in northern China. Vegetation restoration has significantly changed the ecological environment and hydrometeorological conditions of the APENC; however, existing studies have not fully elucidated its impact processes and mechanisms. The results demonstrated significant upward trends in the Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) across the APENC during 2000-2015, accompanied by an improved carbon sequestration capacity in terrestrial ecosystems and an overall increase in water use efficiency. Large-scale restoration projects have amplified evapotranspiration (ET) in most APENC regions, with enhanced ET-derived moisture contributing to 10.8% of precipitation through hydrological recycling processes. A pronounced increase in the Precipitation Recycling Ratio (PRR) was observed in APENC, indicating that vegetation restoration intensified the regional hydrological cycling to augment local precipitation. Synergistic effects between the East Asian summer monsoon and mid-latitude westerlies dominate evaporated moisture transport during the growing seasons. Vegetation restoration amplifies the regional vapor flux through enhanced transpiration, elevates the recycled moisture proportion in precipitation formation, and produces positive feedback on precipitation via intensified moisture recycling processes, making substantial contributions to precipitation in downwind regions. Vegetation restoration alters precipitation patterns through two synergistic mechanisms:
| [1] | ZHAO Halin, ZHAO Xueyong, ZHANG Tonghui,et al. Boundary line on agro-pasture zigzag zone in north China and its problems on eco-environment[J]. Advances in Earth Science,2002,17(5): 739-747. |
| 赵哈林,赵学勇,张铜会,等. 北方农牧交错带的地理界定及其生态问题[J]. 地球科学进展,2002,17(5): 739-747. | |
| [2] | CHEN Xueping, ZHAO Xueyong, WANG Ruixiong, et al. Research advances on the impact of climate change and LUCC for water resources in the northern agro-pastoral zone in China[J]. Journal of Desert Research, 2022, 42(3): 170-177. |
| 陈雪萍, 赵学勇, 王瑞雄, 等. 气候变化与土地利用/覆被变化对中国北方农牧交错带水资源影响研究进展[J]. 中国沙漠, 2022, 42(3): 170-177. | |
| [3] | HE Chansheng, ZHANG Baoqing, ZHANG Lanhui, et al. Influence of land use change on surface water thermal process in farming-pastoral ecotone[M]. Beijing: Science Press, 2024. |
| 贺缠生, 张宝庆, 张兰慧, 等. 农牧交错带土地利用变化对地表水热过程的影响[M]. 北京: 科学出版社, 2024. | |
| [4] | YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography, 2018, 37(1): 36-45. |
| 杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45. | |
| [5] | BRANCH O, WULFMEYER V. Deliberate enhancement of rainfall using desert plantations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 841-18 847. |
| [6] | Meixia Lü, MA Zhuguo, LI Mingxing. A review on the changing water cycle of the Yellow River Basin under changes in climate, vegetation, and human water use[J]. Transactions of Atmospheric Sciences, 2023, 46(6): 801-812. |
| 吕美霞, 马柱国, 李明星. 气候变化、植被改变及人类用水与黄河流域水循环的研究进展[J]. 大气科学学报, 2023, 46(6): 801-812. | |
| [7] | TANG Qiuhong. Global change hydrology: terrestrial water cycle and global Chang[J]. Science China: Earth Sciences, 2020, 50(3): 436-438. |
| 汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020, 50(3): 436-438. | |
| [8] | ZHOU Guoyi, XIA Jun, ZHOU Ping, et al. Not vegetation itself but mis-revegetation reduces water resources[J]. Science China: Earth Sciences,2021,51(2):175-182. |
| 周国逸,夏军,周平,等. 不恰当的植被恢复导致水资源减少[J]. 中国科学:地球科学,2021,51(2):175-182. | |
| [9] | STAAL A, THEEUWEN J J E, WANG-ERLANDSSON L, et al. Targeted rainfall enhancement as an objective of forestation[J]. Global Change Biology, 2024, 30(1). DOI: 10.1111/gcb.17096 . |
| [10] | ZHANG B Q, TIAN L, YANG Y T, et al. Revegetation does not decrease water yield in the Loess Plateau of China[J]. Geophysical Research Letters, 2022, 49(9). DOI: 10.1029/2022GL098025 . |
| [11] | SHAO Ming’an, JIA Xiaoxu, WANG Yunqiang, et al. A review of studies on dried soil layers in the Loess Plateau[J]. Advances in Earth Science, 2016, 31(1): 14-22. |
| 邵明安, 贾小旭, 王云强, 等. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22. | |
| [12] | GE J, PITMAN A J, GUO W D, et al. Impact of revegetation of the Loess Plateau of China on the regional growing season water balance[J]. Hydrology and Earth System Sciences, 2020, 24(2): 515-533. |
| [13] | ZHOU S, PARK W A, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 848-18 853. |
| [14] | FENG X M, FU B J, PIAO S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6: 1 019-1 022. |
| [15] | LI Y, PIAO S L, LI L Z X, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances, 2018, 4(5). DOI: 10.1126/sciadv.aar4182 . |
| [16] | TIAN L, ZHANG B Q, CHEN S Y, et al. Large-scale afforestation enhances precipitation by intensifying the atmospheric water cycle over the Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(16). DOI:10.1029/2022JD036738 . |
| [17] | WANG X J, ZHANG B Q, LI F, et al. Vegetation restoration projects intensify intraregional water recycling processes in the agro-pastoral ecotone of northern China[J]. Journal of Hydrometeorology, 2021. DOI: 10.1175/JHM-D-20-0125.1 . |
| [18] | LIU Y, GE J, GUO W D, et al. Revisiting biophysical impacts of greening on precipitation over the Loess Plateau of China using WRF with water vapor tracers[J]. Geophysical Research Letters, 2023, 50(8). DOI:10.1029/2023GL102809 . |
| [19] | SMITH C, BAKER J A, SPRACKLEN D V. Tropical deforestation causes large reductions in observed precipitation[J]. Nature, 2023, 615(7 951): 270-275. |
| [20] | YANG Z, DOMINGUEZ F. Investigating land surface effects on the moisture transport over south America with a moisture tagging model[J]. Journal of Climate, 2019, 32(19): 6 627-6 644. |
| [21] | CUI J P, LIAN X, HUNTINGFORD C, et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J]. Nature Geoscience, 2022, 15: 982-988. |
| [22] | WANG-ERLANDSSON L, FETZER I, KEYS P W, et al. Remote land use impacts on river flows through atmospheric teleconnections[J]. Hydrology and Earth System Sciences, 2018, 22(8): 4 311-4 328. |
| [23] | LIU Mengzhu, WANG Yanfang, PEI Hongwei,et al. The changes of land use and carbon storage in the northern farming-pastoral ecotone under the background of returning farmland to forest(grass)[J]. Journal of Desert Research,2021,41(1): 174-182. |
| 刘孟竹,王彦芳,裴宏伟,等. 退耕还林(草)背景下中国北方农牧交错带土地利用及碳储量变化[J]. 中国沙漠,2021,41(1): 174-182. | |
| [24] | XUE Y Y, ZHANG B Q, HE C S, et al. Detecting vegetation variations and main drivers over the agropastoral ecotone of northern China through the ensemble empirical mode decomposition method[J]. Remote Sensing, 2019, 11(16). DOI: 10.3390/rs11161860 . |
| [25] | FANG Zihang, HE Chunyang, LIU Zhifeng, et al. Climate change and future trends in the agro-pastoral transitional zone in northern China: the comprehensive analysis with the historical observation and the model simulation[J]. Journal of Natural Resources, 2020, 35(2): 358-370. |
| 方梓行, 何春阳, 刘志锋, 等. 中国北方农牧交错带气候变化特点及未来趋势: 基于观测和模拟资料的综合分析[J]. 自然资源学报, 2020, 35(2): 358-370. | |
| [26] | CAO Q, YU D Y, GEORGESCU M, et al. Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China[J]. Environmental Research Letters, 2015, 10(12). DOI: 10.1016/j.scitotenv.2020.140570 . |
| [27] | WANG X J, ZHANG B Q, XU X F, et al. Regional water-energy cycle response to land use/cover change in the agro-pastoral ecotone, northwest China[J]. Journal of Hydrology, 2020, 580. DOI:10.1016/j.jhydrol.2019.124246 . |
| [28] | WANG S J, ZHANG M J, BOWEN G J, et al. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters[J]. Water Resources Research, 2018, 54(11): 9 131-9 143. |
| [29] | van der ENT R J, SAVENIJE H H G, SCHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9). DOI: 10.1029/2010WR009127 . |
| [30] | DOMINGUEZ F, EIRAS-BARCA J, YANG Z, et al. Amazonian moisture recycling revisited using WRF with water vapor tracers[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(4). DOI: 10.1029/2021JD035259 . |
| [31] | ZHANG F, HUANG T M, MAN W M, et al. Contribution of recycled moisture to precipitation: a modified D-excess-based model[J]. Geophysical Research Letters, 2021, 48(21). DOI: 10.1029/2021gl095909 . |
| [32] | DOMINGUEZ F, MIGUEZ-MACHO G, HU H C. WRF with water vapor tracers: a study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927. |
| [33] | ARNAULT J, KNOCHE R, WEI J H, et al. Evaporation tagging and atmospheric water budget analysis with WRF: a regional precipitation recycling study for West Africa[J]. Water Resources Research, 2016, 52(3): 1 544-1 567. |
| [34] | HE Jie, YANG Kun, LI Xin, et al. China meteorological forcing dataset v2.0 (1951-2024)[DS/OL]. (2024-10-23 2024-10-23)[2025-01-24]. . |
| 何杰, 阳坤, 李新, 等. 中国区域地面气象要素驱动数据集v2.0(1951-2024)[DS/OL]. 国家青藏高原数据中心(2024-10-23)[2025-01-24]. . | |
| [35] | LI Xuliang. Impact of ecological restoration on evapotranspiration and optimization of land use patterns in the agro-pastoral ecotone of northern China[D]. Lanzhou: Lanzhou University, 2024. |
| 李旭亮.北方农牧交错带生态恢复对蒸散发的影响及土地利用格局优化研究[D]. 兰州:兰州大学,2024. | |
| [36] | ESA. Land Cover CCI Product User Guide Version 2[Z]. Technical Report, 2017[2025-01-24]. maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf. |
| [37] | LIANG S L, ZHAO X, LIU S H, et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies[J]. International Journal of Digital Earth, 2013, 6(): 5-33. |
| [38] | PINZON J E, PAK E W, TUCKER C J, et al. Global vegetation greenness (NDVI) from AVHRR GIMMS-3G+: 1 981-2 022(Version 1)[DS/OL]. ORNL Distributed Active Archive Center(2023-09-01) [2025-01-24]. . |
| [39] | RUNNING S W, ZHAO M S. User’s Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm [DS]. Washington: MODIS Land Team, 2025: 1-28. |
| [40] | DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597. |
| [41] | LIU Z J, LIU Y S, WANG S S, et al. Evaluation of spatial and temporal performances of ERA-interim precipitation and temperature in mainland China [J]. Journal of Climate, 2018, 31(11): 4 347-4 365. |
| [42] | BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part I: review of recycling models[J]. Journal of Climate, 2001, 14(12): 2 497-2 508. |
| [43] | DOMINGUEZ F, KUMAR P, LIANG X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19(8): 1 513-1 530. |
| [44] | SHAO R, ZHANG B Q, SU T X, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11 783-11 802. |
| [45] | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3[J]. NCAR Technical Note, 2008, 475(125). DOI:10.13140/RG.2.1.2310.6645 . |
| [46] | ASHARAF S, DOBLER A, AHRENS B. Soil moisture-precipitation feedback processes in the Indian summer monsoon season[J]. Journal of Hydrometeorology, 2012, 13(5): 1 461-1 474. |
| [47] | ZHAO R B, FENG X M, ZHOU C W, et al. El Ni?o Southern oscillation events contribute significantly to the interannual variations of dust activity over East Asia[J]. Atmospheric Research, 2025, 315. DOI: 10.2139/ssrn.4922115 . |
| [48] | WANG S, FU B J, WEI F L, et al. Drylands contribute disproportionately to observed global productivity increases[J]. Science Bulletin, 2023, 68(2): 224-232. |
| [49] | KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7 458): 324-327. |
| [50] | CAO M Z, WANG W G, WEI J, et al. Revegetation impacts on moisture recycling and precipitation trends in the Chinese Loess Plateau[J]. Water Resources Research, 2024, 60(12). DOI:10.1029/2024WR038199 . |
| [51] | GAO S Q, Lü Y H, JIANG X H. Increased precipitation and vegetation cover synergistically enhanced the availability and effectiveness of water resources in a dryland region[J]. Journal of Hydrology, 2025, 654. DOI: 10.1029/2024WR038199 . |
| [52] | JIA X X, SHAO M A, WEI X R, et al. Policy development for sustainable soil water use on China’s Loess Plateau[J]. Science Bulletin, 2020, 65(24): 2 053-2 056. |
| [53] | XU J P, LIU M X, YI J, et al. Influence of vegetation restoration strategies on seasonal soil water deficit in a subtropical hilly catchment of southwest China[J]. CATENA, 2025, 248. DOI: 10.1016/j.catena.2024.108578 . |
| [54] | LIN X, ZHANG S W, ZHAO X Y, et al. Global thresholds for the climate-driven effects of vegetation restoration on runoff and soil erosion[J]. Journal of Hydrology, 2025, 647. DOI: 10.1016/j.jhydrol.2024.132374 . |
| [55] | LUAN J K, MA N. Responses of seasonal hydrological processes to vegetation change in the Yellow River Basin[J]. Journal of Hydrology, 2025, 660. DOI: 10.1016/j.jhydrol.2025.133449 . |
| [56] | ZHANG B Q. Albedo-driven hydroclimatic impacts of large-scale vegetation restoration should not be overlooked[J]. Nature Water, 2025, 3: 358-359. |
| [57] | SANTANELLO J A. Results from Local Land-Atmosphere Coupling(LoCo) Project[J]. GEWEX News, 2011, 21(4): 7-9. |
| [58] | SANTANELLO J A, ROUNDY J, DIRMEYER P A. Quantifying the land-atmosphere coupling behavior in modern reanalysis products over the U.S. southern great Plains[J]. Journal of Climate, 2015, 28(14): 5 813-5 829. |
| [59] | HOHENEGGER C, BROCKHAUS P, BRETHERTON C S, et al. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection[J]. Journal of Climate, 2009, 22(19): 5 003-5 020. |
| [60] | KUCHARSKI F, MOLTENI F, KING M P, et al. On the need of intermediate complexity general circulation models: a “SPEEDY” example[J]. Bulletin of the American Meteorological Society, 2013, 94(1): 25-30. |
| [61] | WANG X J, ZHANG Z Y, ZHANG B Q, et al. Quantifying the impact of land use and land cover change on moisture recycling with convection-permitting WRF-tagging modeling in the agro-pastoral ecotone of northern China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(8). DOI: 10.1029/2022JD038421 . |
| [62] | SCH?R C, LüTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate, 1999, 12(3): 722-741. |
| [63] | ALESSI M J, HERRERA D A, EVANS C P, et al. Soil moisture conditions determine land-atmosphere coupling and drought risk in the northeastern United States[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(6). DOI: 10.1029/2021JD034740 . |
| [64] | PEARCE F. Weather makers[J]. Science, 2020, 368(6 497): 1 302-1 305. |
/
| 〈 |
|
〉 |